Chiral fermion anomaly as a memory effect

We study the non-conservation of the chiral charge of Dirac fields between past and future null infinity due to the Adler-Bell-Jackiw chiral anomaly. In previous investigations \cite{dR21}, we found that this charge fails to be conserved if electromagnetic sources in the bulk emit circularly polarized radiation. In this article, we unravel yet another contribution coming from the non-zero, infrared"soft"charges of the external, electromagnetic field. This new contribution can be interpreted as another manifestation of the ordinary memory effect produced by transitions between different infrared sectors of Maxwell theory, but now on test quantum fields rather than on test classical particles. In other words, a flux of electromagnetic waves can leave a memory on quantum fermion states in the form of a permanent, net helicity. We elaborate this idea in both $1+1$ and $3+1$ dimensions. We also show that, in sharp contrast, gravitational infrared charges do not contribute to the fermion chiral anomaly.

[1]  Iván Agulló,et al.  On the Electric-Magnetic Duality Symmetry: Quantum Anomaly, Optical Helicity, and Particle Creation , 2018, Symmetry.

[2]  M. Nakahara Geometry, Topology and Physics , 2018 .

[3]  A. Ashtekar,et al.  Null infinity, the BMS group and infrared issues , 2018, General Relativity and Gravitation.

[4]  T. Peters Gravitation , 2018, PHYSIK.

[5]  A. Ashtekar,et al.  On the ambiguity in the notion of transverse traceless modes of gravitational waves , 2017, 1707.09914.

[6]  A. Ashtekar,et al.  On a basic conceptual confusion in gravitational radiation theory , 2017, 1707.07729.

[7]  A. Strominger Lectures on the Infrared Structure of Gravity and Gauge Theory , 2017, 1703.05448.

[8]  Christian Bär,et al.  A Rigorous Geometric Derivation of the Chiral Anomaly in Curved Backgrounds , 2015, 1508.05345.

[9]  J. Winicour,et al.  Global aspects of radiation memory , 2014, 1407.0259.

[10]  Matthew D. Schwartz,et al.  Quantum Field Theory and the Standard Model , 2013 .

[11]  L. Bieri,et al.  An electromagnetic analogue of gravitational wave memory , 2013, 1307.5098.

[12]  M. A. Vazquez-Mozo,et al.  An Invitation to Quantum Field Theory , 2011 .

[13]  L. Parker,et al.  Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity , 2009 .

[14]  P. Nieuwenhuizen,et al.  Path Integrals and Anomalies in Curved Space , 2006 .

[15]  M. Shifman Instantons in gauge theories , 1994 .

[16]  J. Frauendiener Note on the memory effect , 1992 .

[17]  K. Thorne,et al.  Gravitational-wave bursts with memory and experimental prospects , 1987, Nature.

[18]  Sam B. Treiman,et al.  Current Algebra and Anomalies , 1985 .

[19]  Holger Bech Nielsen,et al.  The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal , 1983 .

[20]  J. Ambjorn,et al.  The axial anomaly and the lattice Dirac sea , 1983 .

[21]  A. Ashtekar Radiative degrees of freedom of the gravitational field in exact general relativity , 1981 .

[22]  Andrew J. Hanson,et al.  Gravitation, Gauge Theories and Differential Geometry , 1980 .

[23]  R. Delbourgo,et al.  The gravitational correction to PCAC , 1972 .

[24]  Roger Penrose,et al.  An Approach to Gravitational Radiation by a Method of Spin Coefficients , 1962 .

[25]  H. Lawson Surveys in Differential Geometry , 2012 .

[26]  J. Westgard Introduction to Electrodynamics , 1997 .

[27]  K. Paranjape Geometry , 1996 .

[28]  Abhay Ashtekar,et al.  Asymptotic quantization : based on 1984 Naples lectures , 1987 .

[29]  日本物理学会,et al.  Progress in Theoretical Physics , 1946, Nature.

[30]  R. Bertlmann,et al.  Anomalies in Quantum Field Theory , 2022 .