Investigation of corrosion and tribocorrosion behavior of boron doped and graphene oxide doped TiO2 nanotubes produced on Cp-Ti

[1]  Abdulkadir Celik,et al.  Improving the wettability and corrosion behavior of Cp-Ti by applying anodization surface treatment with the addition of boric acid, graphene oxide and hydroxyapatite , 2022, Materials Today Communications.

[2]  Erfan Zal Nezhad,et al.  Synergistic effect of carbon nanotube/TiO2 nanotube multi-scale reinforcement on the mechanical properties and hydration process of portland cement paste , 2021, Construction and Building Materials.

[3]  Qing Song,et al.  Titanium dioxide nanotubes as drug carriers for infection control and osteogenesis of bone implants , 2021, Drug Delivery and Translational Research.

[4]  M. Momeni,et al.  Fabrication of Ag electrodeposited-iron doped TiO2 nanotube composites for photoelectrochemical cathodic protection applications , 2021, Journal of Electroanalytical Chemistry.

[5]  F. Toptan,et al.  A promising method to develop TiO2-based nanotubular surfaces on Ti-40Nb alloy with enhanced adhesion and improved tribocorrosion resistance , 2021 .

[6]  Tongmin Wang,et al.  Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater , 2021 .

[7]  O. Çomaklı,et al.  Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films , 2020 .

[8]  N. Rajendran,et al.  Effect of Electrolyte Temperature and Anodization Time on Formation of TiO2 Nanotubes for Biomedical Applications , 2020 .

[9]  Ali Samadikuchaksaraei,et al.  Bioinspired multifunctional TiO2 hierarchical micro/nanostructures with tunable improved bone cell growth and inhibited bacteria adhesion , 2020 .

[10]  Ming-hua Zhou,et al.  Stable boron and cobalt co-doped TiO2 nanotubes anode for efficient degradation of organic pollutants. , 2020, Journal of hazardous materials.

[11]  Ritesh Kumar,et al.  Tuning the electronic band alignment properties of TiO2 nanotubes by boron doping , 2019, Results in Physics.

[12]  L. Fathyunes,et al.  Development of graphene oxide/calcium phosphate coating by pulse electrodeposition on anodized titanium: Biocorrosion and mechanical behavior. , 2019, Journal of the mechanical behavior of biomedical materials.

[13]  F. Calignano,et al.  TiO2 nanotube-based smart 3D electrodes by anodic oxidation of additively manufactured Ti6Al4V structures , 2018, Materials Today Communications.

[14]  K. Gulati,et al.  Tailoring the immuno-responsiveness of anodized nano-engineered titanium implants. , 2018, Journal of materials chemistry. B.

[15]  Guowei Zhou,et al.  Mesoporous TiO2 and Co-doped TiO2 Nanotubes/Reduced Graphene Oxide Composites as Electrodes for Supercapacitors , 2016 .

[16]  A. Lisowska-Oleksiak,et al.  Thin layer of ordered boron-doped TiO2 nanotubes fabricated in a novel type of electrolyte and characterized by remarkably improved photoactivity , 2015 .

[17]  O. Anjaneyulu,et al.  Plasmonic effect of Ag@TiO2 core–shell nanocubes on dye-sensitized solar cell performance based on reduced graphene oxide–TiO2 nanotube composite , 2015 .

[18]  A. Lisowska-Oleksiak,et al.  Facile preparation of extremely photoactive boron-doped TiO2 nanotubes arrays , 2015 .

[19]  S. Rohani,et al.  Preparation of multiple-doped TiO2 nanotube arrays with nitrogen, carbon and nickel with enhanced visible light photoelectrochemical activity via single-step anodization , 2015 .

[20]  Xuejiao Zhang,et al.  Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications , 2015 .

[21]  J. Celis,et al.  Increasing the tribological performances of Ti–6Al–4V alloy by forming a thin nanoporous TiO2 layer and hydroxyapatite electrodeposition under lubricated conditions , 2014 .

[22]  Preecha Termsuksawad,et al.  Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications , 2014 .

[23]  Changjian Lin,et al.  N-doped TiO2 nanotube array photoelectrode for visible-light-induced photoelectrochemical and photoelectrocatalytic activities , 2013 .

[24]  Ning Liu,et al.  A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. , 2012, Small.

[25]  Sanjaya D. Perera,et al.  Hydrothermal synthesis of graphene-TiO 2 nanotube composites with enhanced photocatalytic activity , 2012 .

[26]  Bharat Bhushan,et al.  A Review of Ionic Liquids for Green Molecular Lubrication in Nanotechnology , 2010 .

[27]  Stefano Mischler,et al.  Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation , 2008 .

[28]  V. Pillai,et al.  Tuning the Wetting Properties of Multiwalled Carbon Nanotubes by Surface Functionalization , 2008 .

[29]  J. I. Qazi,et al.  Titanium alloys for biomedical applications , 2006 .

[30]  D. Pittet,et al.  Infection in breast implants. , 2005, The Lancet. Infectious diseases.

[31]  J. Celis,et al.  Electrochemical techniques for studying tribocorrosion processes , 2004 .

[32]  A. Matthews,et al.  Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis , 2000 .

[33]  A. Çelik,et al.  Enhancement of the tribological performance and surface wettability of Ti6Al4V biomedical alloy with boric/sulfuric acid anodic film , 2021, Surface Topography: Metrology and Properties.

[34]  G. Thouas,et al.  Metallic implant biomaterials , 2015 .

[35]  Mitsuo Niinomi,et al.  Mechanical biocompatibilities of titanium alloys for biomedical applications. , 2008, Journal of the mechanical behavior of biomedical materials.