A covariance-free iterative algorithm for distributed principal component analysis on vertically partitioned data

[1]  Sergio Valcarcel Macua,et al.  Consensus-based distributed principal component analysis in wireless sensor networks , 2010, 2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[2]  Alfred O. Hero,et al.  Principal component analysis in decomposable Gaussian graphical models , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[3]  Alfred O. Hero,et al.  Decomposable Principal Component Analysis , 2009, IEEE Transactions on Signal Processing.

[4]  Jon Atli Benediktsson,et al.  Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas , 2009, EURASIP J. Adv. Signal Process..

[5]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[6]  R. K. Agrawal,et al.  Perturbation scheme for online learning of features: Incremental principal component analysis , 2008, Pattern Recognit..

[7]  Ling Huang,et al.  In-Network PCA and Anomaly Detection , 2006, NIPS.

[8]  Bernhard Schölkopf,et al.  Iterative kernel principal component analysis for image modeling , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Jan A Snyman,et al.  Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms , 2005 .

[10]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[11]  Michael J. Pazzani,et al.  A Principal Components Approach to Combining Regression Estimates , 1999, Machine Learning.

[12]  Juyang Weng,et al.  Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Hairong Qi,et al.  Global Principal Component Analysis for Dimensionality Reduction in Distributed Data Mining , 2003 .

[14]  Hillol Kargupta,et al.  Distributed Clustering Using Collective Principal Component Analysis , 2001, Knowledge and Information Systems.

[15]  Michael J. Black,et al.  Robust principal component analysis for computer vision , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Sivan Toledo,et al.  Out-of-Core SVD and QR Decompositions , 2001, PPSC.

[17]  Yuntao Cui,et al.  Appearance-Based Hand Sign Recognition from Intensity Image Sequences , 2000, Comput. Vis. Image Underst..

[18]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[19]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[20]  J. Macgregor,et al.  Analysis of multiblock and hierarchical PCA and PLS models , 1998 .

[21]  Juyang Weng,et al.  State-based SHOSLIF for indoor visual navigation , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[22]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[23]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[24]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[25]  Edward J. Wegman,et al.  Huge Data Sets and the Frontiers of Computational Feasibility , 1995 .

[26]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[27]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[28]  I. Jolliffe Principal Component Analysis , 2005 .

[29]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[30]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .