Algebraic pseudorandom functions with improved efficiency from the augmented cascade

We construct an algebraic pseudorandom function (PRF) that is more efficient than the classic Naor-Reingold algebraic PRF. Our PRF is the result of adapting the cascade construction, which is the basis of HMAC, to the algebraic settings. To do so we define an augmented cascade and prove it secure when the underlying PRF satisfies a property called parallel security. We then use the augmented cascade to build new algebraic PRFs. The algebraic structure of our PRF leads to an efficient large-domain Verifiable Random Function (VRF) and a large-domain simulatable VRF.

[1]  Dan Boneh,et al.  Efficient Selective Identity-Based Encryption Without Random Oracles , 2011, Journal of Cryptology.

[2]  Hugo Krawczyk,et al.  Keying Hash Functions for Message Authentication , 1996, CRYPTO.

[3]  Silvio Micali,et al.  Verifiable random functions , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[4]  Dario Fiore,et al.  Verifiable Random Functions from Identity-Based Key Encapsulation , 2009, EUROCRYPT.

[5]  Dan Boneh,et al.  Hierarchical Identity Based Encryption with Constant Size Ciphertext , 2005, EUROCRYPT.

[6]  Rafail Ostrovsky,et al.  Circular-Secure Encryption from Decision Diffie-Hellman , 2008, CRYPTO.

[7]  Victor S. Miller,et al.  The Weil Pairing, and Its Efficient Calculation , 2004, Journal of Cryptology.

[8]  Yi Mu,et al.  Practical Compact E-Cash , 2007, IACR Cryptol. ePrint Arch..

[9]  Yevgeniy Dodis,et al.  Efficient Construction of (Distributed) Verifiable Random Functions , 2003, Public Key Cryptography.

[10]  Mihir Bellare,et al.  New Proofs for NMAC and HMAC: Security without Collision Resistance , 2006, Journal of Cryptology.

[11]  Noga Alon,et al.  Construction Of Asymptotically Good Low-rate Error-correcting Codes Through Pseudo-random Graphs , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.

[12]  Noga Alon,et al.  Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs , 1992, IEEE Trans. Inf. Theory.

[13]  Dan Boneh,et al.  Collusion-Secure Fingerprinting for Digital Data , 1998, IEEE Trans. Inf. Theory.

[14]  Dan Boneh,et al.  Short Signatures Without Random Oracles , 2004, EUROCRYPT.

[15]  Hovav Shacham,et al.  Short Group Signatures , 2004, CRYPTO.

[16]  Anna Lysyanskaya,et al.  Unique Signatures and Verifiable Random Functions from the DH-DDH Separation , 2002, CRYPTO.

[17]  Benny Pinkas,et al.  Keyword Search and Oblivious Pseudorandom Functions , 2005, TCC.

[18]  Yevgeniy Dodis,et al.  A Verifiable Random Function with Short Proofs and Keys , 2005, Public Key Cryptography.

[19]  Melissa Chase,et al.  Simulatable VRFs with Applications to Multi-theorem NIZK , 2007, CRYPTO.

[20]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[21]  Brent Waters,et al.  Constructing Verifiable Random Functions with Large Input Spaces , 2010, EUROCRYPT.

[22]  Dan Boneh,et al.  Secure Identity Based Encryption Without Random Oracles , 2004, CRYPTO.

[23]  Xiaomin Liu,et al.  Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection , 2009, TCC.

[24]  Markulf Kohlweiss,et al.  Compact E-Cash and Simulatable VRFs Revisited , 2009, Pairing.

[25]  Hugo Krawczyk,et al.  Pseudorandom functions revisited: the cascade construction and its concrete security , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[26]  Allison Bishop,et al.  Efficient pseudorandom functions from the decisional linear assumption and weaker variants , 2009, CCS.

[27]  Brent Waters,et al.  Efficient Identity-Based Encryption Without Random Oracles , 2005, EUROCRYPT.

[28]  Eike Kiltz,et al.  Secure Hybrid Encryption from Weakened Key Encapsulation , 2007, CRYPTO.

[29]  Moni Naor,et al.  Number-theoretic constructions of efficient pseudo-random functions , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[30]  Hovav Shacham,et al.  A Cramer-Shoup Encryption Scheme from the Linear Assumption and from Progressively Weaker Linear Variants , 2007, IACR Cryptol. ePrint Arch..

[31]  Dan S. Wallach,et al.  Denial of Service via Algorithmic Complexity Attacks , 2003, USENIX Security Symposium.