Role of Microtearing Turbulence in DIII-D High Bootstrap Current Fraction Plasmas.

We report on the first direct comparisons of microtearing turbulence simulations to experimental measurements in a representative high bootstrap current fraction (f_{BS}) plasma. Previous studies of high f_{BS} plasmas carried out in DIII-D with large radius internal transport barriers (ITBs) have found that, while the ion energy transport is accurately reproduced by neoclassical theory, the electron transport remains anomalous and not well described by existing quasilinear transport models. A key feature of these plasmas is the large value of the normalized pressure gradient, which is shown to completely stabilize conventional drift-wave and kinetic ballooning mode instabilities in the ITB, but destabilizes the microtearing mode. Nonlinear gyrokinetic simulations of the ITB region performed with the cgyro code demonstrate that the microtearing modes are robustly unstable and capable of driving electron energy transport levels comparable to experimental levels for input parameters consistent with the experimental measurements. These simulations uniformly predict that the microtearing mode fluctuation and flux spectra extend to significantly shorter wavelengths than the range of linear instability, representing significantly different nonlinear dynamics and saturation mechanisms than conventional drift-wave turbulence, which is also consistent with the fundamental tearing nature of the instability. The predicted transport levels are found to be most sensitive to the magnetic shear, rather than the temperature gradients more typically identified as driving turbulent plasma transport.

[1]  G. Staebler,et al.  Perturbative transport modeling of cold-pulse dynamics in Alcator C-Mod Ohmic plasmas , 2019, Nuclear Fusion.

[2]  J. Contributors,et al.  Gyrokinetic analysis and simulation of pedestals to identify the culprits for energy losses using ‘fingerprints’ , 2019, Nuclear Fusion.

[3]  J. Citrin,et al.  Impact of electron-scale turbulence and multi-scale interactions in the JET tokamak , 2018, Nuclear Fusion.

[4]  T. Görler,et al.  Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade , 2018 .

[5]  Orso Meneghini,et al.  OMFIT Tokamak Profile Data Fitting and Physics Analysis , 2018 .

[6]  J. Weiland,et al.  Study of the parametric dependence of linear and nonlinear microtearing modes in conventional tokamak discharges , 2018 .

[7]  A. Ishizawa,et al.  Suppression of Ion-Scale Microtearing Modes by Electron-Scale Turbulence via Cross-Scale Nonlinear Interactions in Tokamak Plasmas. , 2017, Physical review letters.

[8]  J. Garcia,et al.  Transport modelling of JT-60U and JET plasmas with internal transport barriers towards prediction of JT-60SA high-beta steady-state scenario , 2017 .

[9]  G. Staebler,et al.  Transport modeling of the DIII-D high βp scenario and extrapolations to ITER steady-state operation , 2017 .

[10]  F. Jenko,et al.  Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes , 2017, 1707.03781.

[11]  B. A. Grierson,et al.  Gyrokinetic predictions of multiscale transport in a DIII-D ITER baseline discharge , 2017 .

[12]  G. Staebler,et al.  Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod , 2017 .

[13]  G. Staebler,et al.  Investigation of energy transport in DIII-D High-βP EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models , 2017 .

[14]  E. A. Belli,et al.  A high-accuracy Eulerian gyrokinetic solver for collisional plasmas , 2016, J. Comput. Phys..

[15]  S. Ding Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST , 2016 .

[16]  Chris Holland,et al.  Validation metrics for turbulent plasma transport , 2016 .

[17]  J. Weiland,et al.  Microtearing modes in tokamak discharges , 2016 .

[18]  F. Jenko,et al.  Microtearing turbulence limiting the JET-ILW pedestal , 2015 .

[19]  L. L. Lao,et al.  Compatibility of internal transport barrier with steady-state operation in the high bootstrap fraction regime on DIII-D , 2015, Nuclear Fusion.

[20]  A. D. Turnbull,et al.  Integrated modeling applications for tokamak experiments with OMFIT , 2015 .

[21]  M. Nakata,et al.  Cross-Scale Interactions between Electron and Ion Scale Turbulence in a Tokamak Plasma. , 2015, Physical review letters.

[22]  G. Giruzzi,et al.  Physics comparison and modelling of the JET and JT-60U core and edge: towards JT-60SA predictions , 2014 .

[23]  M. Pueschel,et al.  Gyrokinetic studies of microinstabilities in the reversed field pinch , 2013, 1301.4576.

[24]  F. Sattin,et al.  On the linear stability of collisionless microtearing modes , 2013, 1301.1601.

[25]  C. Roach,et al.  Microtearing modes at the top of the pedestal , 2012, 1209.3695.

[26]  F Jenko,et al.  Origin of magnetic stochasticity and transport in plasma microturbulence. , 2012, Physical review letters.

[27]  David R. Smith,et al.  Suppressing Electron Turbulence and Triggering Internal Transport Barriers with Reversed Magnetic Shear in the National Spherical Torus Experiment , 2012 .

[28]  F. Jenko,et al.  Gyrokinetic prediction of microtearing turbulence in standard tokamaks , 2012 .

[29]  F Jenko,et al.  Gyrokinetic microtearing turbulence. , 2011, Physical review letters.

[30]  R. Bell,et al.  Electromagnetic transport from microtearing mode turbulence. , 2011, Physical review letters.

[31]  Hideo Sugama,et al.  Linearized Model Collision Operators for Multiple Ion Species Plasmas , 2009 .

[32]  Jeff M. Candy,et al.  A unified method for operator evaluation in local Grad–Shafranov plasma equilibria , 2009 .

[33]  Jeff M. Candy,et al.  Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence , 2009 .

[34]  R. Bell,et al.  Microtearing instabilities and electron transport in the NSTX spherical tokamak. , 2007, Physical review letters.

[35]  Jeff M. Candy,et al.  The effect of ion-scale dynamics on electron-temperature-gradient turbulence , 2007 .

[36]  E. Joffrin,et al.  Chapter 6: Steady state operation , 2007 .

[37]  D. Keyes,et al.  Simulation of Fusion Plasmas: Current Status and Future Direction , 2007 .

[38]  J. Kinsey,et al.  A theory-based transport model with comprehensive physicsa) , 2006 .

[39]  M. Takechi,et al.  Stationary high confinement plasmas with large bootstrap current fraction in JT-60U , 2005 .

[40]  T. Fujita Spatial structure of internal and edge transport barriers , 2002 .

[41]  Y. Kamada,et al.  Extended JT-60U plasma regimes for high integrated performance , 2001 .

[42]  H Kubo,et al.  Quasisteady high-confinement reversed shear plasma with large bootstrap current fraction under full noninductive current drive condition in JT-60U. , 2001, Physical review letters.

[43]  Hiroshi Shirai,et al.  Characteristics of internal transport barriers in JT-60U reversed shear plasmas , 2001 .

[44]  R. L. Miller,et al.  Ion temperature gradient turbulence simulations and plasma flux surface shape , 1999 .

[45]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[46]  J. Greene,et al.  Noncircular, finite aspect ratio, local equilibrium model , 1998 .

[47]  E. D. Fredrickson,et al.  REVIEW ARTICLES Fusion plasma experiments on TFTR: A 20 year retrospective* , 1998 .

[48]  T. Fujita,et al.  High performance reversed shear plasmas with a large radius transport barrier in JT-60U , 1998 .

[49]  W. Houlberg,et al.  Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio , 1997 .

[50]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[51]  Atsushi Fukuyama,et al.  Self-sustained turbulence and H-mode confinement in toroidal plasmas , 1993 .

[52]  N. T. Gladd,et al.  Stabilization of the tearing mode in high‐temperature plasma , 1983 .

[53]  N. T. Gladd,et al.  Microtearing modes and anomalous transport in tokamaks , 1980 .

[54]  J. Drake,et al.  Kinetic theory of tearing instabilities , 1977 .

[55]  R. Hazeltine,et al.  Kinetic theory of tearing instability , 1975 .

[56]  Frank Jenko,et al.  Turbulence in high-beta ASDEX upgrade advanced scenarios , 2017 .

[57]  Martin Greenwald,et al.  Multi-scale gyrokinetic simulation of tokamak plasmas: enhanced heat loss due to cross-scale coupling of plasma turbulence , 2015 .

[58]  G. Hammett,et al.  Gyrofluid simulations of turbulence suppression in reversed-shear experiments on the Tokamak Fusion Test Reactor , 1997 .