Coherent Processing and Superresolution Technique of Multi-Band Radar Data Based on Fast Sparse Bayesian Learning Algorithm

The coherent processing and superresolution of multi-band radar data from multiple spatially collocated radars is addressed by utilizing a sparse representation technique in this paper. Firstly a parametric model based on geometrical theory of diffraction (GTD) is adopted to construct a redundant dictionary and provide a good match to the scattering mechanism. Then weights of dictionary atoms are computed by using a fast sparse Bayesian learning algorithm. Meanwhile, a multilevel dynamic dictionary is proposed to improve the accuracy and avoid a vast number of computations due to a large dictionary matrix. The final weights and dictionary atoms are adopted to interpolate between and extrapolate outside of the measurement subbands. Furthermore, a procedure for coherent processing is presented to compensate for the lack of mutual coherence among multiband data from multiple spatially collocated radars. The capability and robustness of the proposed method are validated by applying it to the analytical, simulated and static-range data.

[1]  Randolph L. Moses,et al.  High resolution radar target modeling using a modified Prony estimator , 1992 .

[2]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[3]  Y. Ogawa,et al.  Estimating the time-delay and frequency decay parameter of scattering components using a modified MUSIC algorithm , 1994 .

[4]  J. E. Piou,et al.  Multisensor Fusion Processing for Enhanced Radar Imaging , 2000 .

[5]  Kyung-Tae Kim,et al.  Effect of AR model-based data extrapolation on target recognition performance , 2003 .

[6]  Michael E. Tipping,et al.  Analysis of Sparse Bayesian Learning , 2001, NIPS.

[7]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[8]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[9]  Ilan Ziskind,et al.  Detection of the number of coherent signals by the MDL principle , 1989, IEEE Trans. Acoust. Speech Signal Process..

[10]  Inder J. Gupta,et al.  High-resolution radar imaging using 2-D linear prediction , 1994 .

[11]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[12]  Lawrence Carin,et al.  Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[13]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[14]  Erik G. Larsson,et al.  Amplitude spectrum estimation for two-dimensional gapped data , 2002, IEEE Trans. Signal Process..

[15]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[16]  Shaohong Li,et al.  One-Dimensional Frequency-Domain Features for Aircraft Recognition from Radar Range Profiles , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[17]  R. Kouyoumjian Asymptotic high-frequency methods , 1965 .

[18]  Frank Dellaert,et al.  The Expectation Maximization Algorithm , 2002 .

[19]  Stéphanie Rouquette-Léveil,et al.  Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods , 2001, IEEE Trans. Signal Process..

[20]  Michael E. Tipping,et al.  Fast Marginal Likelihood Maximisation for Sparse Bayesian Models , 2003 .

[21]  Mengdao Xing,et al.  A New Algorithm for Sparse Aperture Interpolation , 2007, IEEE Geoscience and Remote Sensing Letters.

[22]  Inder J. Gupta,et al.  Data extrapolation for high resolution radar imaging , 1994 .

[23]  Kei Suwa,et al.  A Two-Dimensional Bandwidth Extrapolation Technique for Polarimetric Synthetic Aperture Radar Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Kevin M. Cuomo,et al.  Super-resolution methods for wideband radar , 1992 .

[25]  M. J. Gerry,et al.  A GTD-based parametric model for radar scattering , 1995 .

[26]  T. Sarkar,et al.  Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .

[27]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[28]  Zheng Bao,et al.  Sparse Subband Imaging of Space Targets in High-Speed Motion , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  Raj Mittra,et al.  Scattering center analysis via Prony's method , 1987 .

[31]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[32]  Kevin M. Cuomo,et al.  Ultra-wideband sensor fusion for BMD discrimination , 2000, Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037].

[33]  J. T. Mayhan,et al.  Ultrawide-band coherent processing , 1999 .

[34]  Brian W. Zuerndorfer,et al.  Enhanced Imagery Using Spectral-Estimation-Based Techniques , 1997 .

[35]  Randolph L. Moses,et al.  High resolution exponential modeling of fully polarized radar returns , 1991 .

[36]  J. Keller,et al.  Geometrical theory of diffraction. , 1962, Journal of the Optical Society of America.

[37]  Paolo Rocca,et al.  A Bayesian-Compressive-Sampling-Based Inversion for Imaging Sparse Scatterers , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[39]  Hao Ling,et al.  A frequency-aspect extrapolation algorithm for ISAR image simulation based on two-dimensional ESPRIT , 2000, IEEE Trans. Geosci. Remote. Sens..