Analysis of pedestal plasma transport

An H-mode edge pedestal plasma transport benchmarking exercise was undertaken for a single DIII-D pedestal. Transport modelling codes used include 1.5D interpretive (ONETWO, GTEDGE), 1.5D predictive (ASTRA) and 2D ones (SOLPS, UEDGE). The particular DIII-D discharge considered is 98889, which has a typical low density pedestal. Profiles for the edge plasma are obtained from Thomson and charge-exchange recombination data averaged over the last 20% of the average 33.53 ms repetition time between type I edge localized modes. The modelled density of recycled neutrals is largest in the divertor X-point region and causes the edge plasma source rate to vary by a factor ∼102 on the separatrix. Modelled poloidal variations in the densities and temperatures on flux surfaces are small on all flux surfaces up to within about 2.6 mm (ρN > 0.99) of the mid-plane separatrix. For the assumed Fick's-diffusion-type laws, the radial heat and density fluxes vary poloidally by factors of 2–3 in the pedestal region; they are largest on the outboard mid-plane where flux surfaces are compressed and local radial gradients are largest. Convective heat flows are found to be small fractions of the electron (≲10%) and ion (≲25%) heat flows in this pedestal. Appropriately averaging the transport fluxes yields interpretive 1.5D effective diffusivities that are smallest near the mid-point of the pedestal. Their ‘transport barrier’ minima are about 0.3 (electron heat), 0.15 (ion heat) and 0.035 (density) m2 s−1. Electron heat transport is found to be best characterized by electron-temperature-gradient-induced transport at the pedestal top and paleoclassical transport throughout the pedestal. The effective ion heat diffusivity in the pedestal has a different profile from the neoclassical prediction and may be smaller than it. The very small effective density diffusivity may be the result of an inward pinch flow nearly balancing a diffusive outward radial density flux. The inward ion pinch velocity and density diffusion coefficient are determined by a new interpretive analysis technique that uses information from the force balance (momentum conservation) equations; the paleoclassical transport model provides a plausible explanation of these new results. Finally, the measurements and additional modelling needed to facilitate better pedestal plasma transport modelling are discussed.

[1]  S. Malang,et al.  Fusion Engineering and Design , 2012 .

[2]  Comparing 1.5D ONETWO and 2D SOLPS analyses of inter-ELM H-mode plasma in DIII-D , 2010 .

[3]  R. Groebner,et al.  Interpretation of particle pinches and diffusion coefficients in the edge pedestal of DIII-D H-mode plasmas , 2009 .

[4]  C. Hegna,et al.  Toroidal flow and radial particle flux in tokamak plasmas , 2009 .

[5]  Weston M. Stacey,et al.  Representation of the plasma fluid equations in “Miller equilibrium” analytical flux surface geometry , 2009 .

[6]  C. Hegna,et al.  Toroidal rotation in tokamak plasmas , 2009 .

[7]  Jeff M. Candy,et al.  Tokamak profile prediction using direct gyrokinetic and neoclassical simulation , 2009 .

[8]  T. Osborne,et al.  Temporal evolution of H-mode pedestal in DIII-D , 2009 .

[9]  G. Bateman,et al.  Simulation of electron thermal transport in H-mode discharges , 2009 .

[10]  W. Stacey Applications of the Miller equilibrium to extend tokamak computational models , 2008 .

[11]  R. J. Groebner,et al.  Development and validation of a predictive model for the pedestal height , 2008 .

[12]  Gyrokinetic turbulence under near-separatrix or nonaxisymmetric conditions , 2008 .

[13]  J. Candy,et al.  Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics , 2008 .

[14]  T. Osborne,et al.  Edge stability of stationary ELM-suppressed regimes on DIII-D , 2008 .

[15]  Tomonori Takizuka,et al.  Power requirement for accessing the H-mode in ITER , 2008 .

[16]  Weston M. Stacey,et al.  Comparison of theoretical and experimental heat diffusivities in the DIII-D edge plasma , 2008 .

[17]  D. P. Stotler,et al.  Validation in fusion research: Towards guidelines and best practices , 2008, 0801.2787.

[18]  Weston M. Stacey,et al.  Experimentally inferred thermal diffusivities in the edge pedestal between edge-localized modes in DIII-D , 2007 .

[19]  Derivation of paleoclassical key hypothesis , 2007 .

[20]  Weston M. Stacey,et al.  Thermal transport analysis of the edge region in the low and high confinement stages of a DIII-D discharge , 2007 .

[21]  T. Evans,et al.  Investigation of background edge thermal transport in ELMing and ELM-suppressed H-modes in DIII-D , 2006 .

[22]  D. N. Hill,et al.  Experimental tests of paleoclassical transport , 2006 .

[23]  T. L. Rhodes,et al.  Fast automated analysis of high-resolution reflectometer density profiles on DIII-D , 2006 .

[24]  Weston M. Stacey,et al.  Thermal transport in the DIII-D edge pedestal , 2006 .

[25]  Higher order approximations of the transmission and escape probability method for neutral particle transport in edge plasmas , 2006 .

[26]  L. Horton,et al.  SOLPS modelling of ASDEX upgrade H-mode plasma , 2006 .

[27]  B. Braams,et al.  Plasma Edge Physics with B2‐Eirene , 2006 .

[28]  J. Callen Paleoclassical transport in low-collisionality toroidal plasmas , 2005 .

[29]  J. Callen,et al.  Paleoclassical electron heat transport , 2005 .

[30]  S. Voskoboynikov,et al.  Characterization of the H-mode edge barrier at ASDEX Upgrade , 2005 .

[31]  W. Stacey Structure of the edge density pedestal in tokamaks , 2004 .

[32]  R. Maingi,et al.  Physics of pedestal density profile formation and its impact on H-mode density limit in burning plasmas , 2003 .

[33]  Jerry M. Kinsey,et al.  BURNING PLASMA PROJECTIONS USING DRIFT WAVE TRANSPORT MODELS AND SCALINGS FOR THE H-MODE PEDESTAL , 2002 .

[34]  M. Rensink,et al.  Edge-plasma models and characteristics for magnetic fusion energy devices , 2002 .

[35]  J. L. Luxon,et al.  A design retrospective of the DIII-D tokamak , 2002 .

[36]  Y-K.M. Peng,et al.  Characteristics of the first H-mode discharges in the national spherical torus experiment. , 2002, Physical review letters.

[37]  B. Kadomtsev,et al.  Reviews of Plasma Physics , 2012 .

[38]  R. Aymar,et al.  Overview of ITER-FEAT - The future international burning plasma experiment , 2001 .

[39]  Frank Jenko,et al.  Critical gradient formula for toroidal electron temperature gradient modes , 2001 .

[40]  G. F. Counsell,et al.  First physics results from the MAST Mega-Amp Spherical Tokamak , 2001 .

[41]  M. Schaffer,et al.  ExB CIRCULATION AT THE TOKAMAK DIVERTOR X-POINT , 2000 .

[42]  R. D. Deranian,et al.  Progress in quantifying the edge physics of the H mode regime in DIII-D , 2000 .

[43]  M. Rensink,et al.  Users manual for the UEDGE edge-plasma transport code , 2000 .

[44]  R. L. Miller,et al.  Ion temperature gradient turbulence simulations and plasma flux surface shape , 1999 .

[45]  Weston M. Stacey A coupled plasma-neutrals model for divertor simulations , 1998 .

[46]  J. Greene,et al.  Noncircular, finite aspect ratio, local equilibrium model , 1998 .

[47]  DIII-D Team,et al.  Characterization of the separatrix plasma parameters in DIII-D , 1998 .

[48]  W. Houlberg,et al.  Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio , 1997 .

[49]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[50]  M. M. Menon,et al.  Helium transport and exhaust studies in enhanced confinement regimes in DIII-D , 1995 .

[51]  Jose Milovich,et al.  Toroidal gyro‐Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes , 1994 .

[52]  D. N. Hill,et al.  Particle transport studies for single-null divertor discharges in DIII-D , 1993 .

[53]  John Mandrekas,et al.  A transmission/escape probabilities model for neutral particle transport in the outer regions of a diverted tokamak , 1994 .

[54]  G. L. Campbell,et al.  Design and operation of the multipulse Thomson scattering diagnostic on DIII‐D (invited) , 1992 .

[55]  Ker-Chung Shaing,et al.  Effects of orbit squeezing on ion transport in the banana regime in tokamaks , 1992 .

[56]  Rowan,et al.  Equilibrium and perturbed fluxes and turbulence levels in a tokamak: Implications for models. , 1992, Physical review letters.

[57]  G. V. Pereverzew,et al.  ASTRA. An Automatic System for Transport Analysis in a Tokamak. , 1991 .

[58]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[59]  B. G. Hong,et al.  Toroidal electron temperature gradient driven drift modes , 1988 .

[60]  In Arab Republic PLASMA PHYSICS AND CONTROLLED NUCLEAR FUSION RESEARCH , 1987 .

[61]  F. Hinton,et al.  Effect of finite aspect ratio on the neoclassical ion thermal conductivity in the banana regime , 1982 .

[62]  S. Hirshman,et al.  Neoclassical transport of impurities in tokamak plasmas , 1981 .

[63]  S. C. Jardin,et al.  Two‐dimensional transport of tokamak plasmas , 1979 .

[64]  K. Burrell NEUCG: A transport code for hydrogen atoms in cylindrical hydrogenic plasmas , 1978 .

[65]  F. Hinton,et al.  Theory of plasma transport in toroidal confinement systems , 1976 .

[66]  S. I. Braginskii Reviews of Plasma Physics , 1965 .