Mechanical reinforcement in natural rubber/organoclay nanocomposites

[1]  G. Ramorino,et al.  Dynamic and viscoelastic behavior of natural rubber/layered silicate nanocomposites obtained by melt blending , 2007 .

[2]  Sie Chin Tjong,et al.  STRUCTURAL AND MECHANICAL PROPERTIES OF POLYMER NANOCOMPOSITES , 2006 .

[3]  L. Bokobza,et al.  Investigation of the Payne Effect and its Temperature Dependence on Silica-Filled Polydimethylsiloxane Networks. Part I: Experimental Results , 2005 .

[4]  A. Bhowmick,et al.  Effect of nanoclay on the dynamic mechanical properties of styrene butadiene and acrylonitrile butadiene rubber vulcanizates , 2005 .

[5]  J. Karger‐Kocsis,et al.  Effects of primary and quaternary amine intercalants on the organoclay dispersion in a sulfur-cured EPDM rubber , 2005 .

[6]  Richard A. Vaia,et al.  Framework for nanocomposites , 2004 .

[7]  I. Šics,et al.  Thermally induced phase transitions and morphological changes in organoclays. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[8]  R. Vassoille,et al.  Analysis of the non-linear viscoelastic behaviour of silica filled styrene butadiene rubber , 2004 .

[9]  M. Osman,et al.  Structure and Properties of Alkylammonium Monolayers Self-Assembled on Montmorillonite Platelets , 2004 .

[10]  Mo Song,et al.  High performance nanocomposites of polyurethane elastomer and organically modified layered silicate , 2003 .

[11]  F. Lequeux,et al.  Influence of the Glass Transition Temperature Gradient on the Nonlinear Viscoelastic Behavior in Reinforced Elastomers , 2003 .

[12]  R. Magaraphan,et al.  Structure and properties of natural rubber and modified montmorillonite nanocomposites , 2003 .

[13]  Andrea J. Liu,et al.  Jamming at zero temperature and zero applied stress: the epitome of disorder. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  D. Long,et al.  Evidence for the Shift of the Glass Transition near the Particles in Silica-Filled Elastomers , 2002 .

[15]  D. Long,et al.  Filler–elastomer interaction in model filled rubbers, a 1H NMR study , 2002 .

[16]  S. S. Sternstein,et al.  Reinforcement Mechanism of Nanofilled Polymer Melts As Elucidated by Nonlinear Viscoelastic Behavior , 2002 .

[17]  K. Wei,et al.  High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders , 2001 .

[18]  T. Pinnavaia,et al.  Clay Nanolayer Reinforcement of a Silicone Elastomer , 2001 .

[19]  L. Cipelletti,et al.  Jamming phase diagram for attractive particles , 2001, Nature.

[20]  S. S. Sternstein,et al.  Modulus recovery kinetics and other insights into the payne effect for filled elastomers , 2000 .

[21]  Meng-jiao Wang Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates , 1998 .

[22]  J. Funt Dynamic Testing and Reinforcement of Rubber , 1988 .

[23]  R. E. Whittaker,et al.  Low Strain Dynamic Properties of Filled Rubbers , 1971 .

[24]  A. R. Payne The Dynamic Properties of Carbon Black-Loaded Natural Rubber Vulcanizates. Part I , 1963 .

[25]  E. Guth Theory of Filler Reinforcement , 1945 .

[26]  Nitin Kumar,et al.  High-performance elastomeric nanocomposites via solvent-exchange processing. , 2007, Nature materials.

[27]  G. Heinrich,et al.  The role of polymer-filler-interphase in reinforcement of elastomers , 2004 .

[28]  W. Gronski,et al.  Filler networking of silica and organoclay in rubber composites: Reinforcement and dynamic-mechanical properties , 2003 .

[29]  Gert Heinrich,et al.  Recent Advances in the Theory of Filler Networking in Elastomers , 2002 .

[30]  T. Vilgis,et al.  Universal Properties of Filled Rubbers: Mechanisms for Reinforcement on Different Length Scales , 1999 .

[31]  Maier Pg,et al.  Molecular interpretation of the Payne effect , 1996 .