Q-log-convexity from Linear Transformations and Polynomials with Only Real Zeros

Abstract In this paper, we mainly study the stability of iterated polynomials and linear transformations preserving the strong q -log-convexity of polynomials. Let [ T n , k ] n , k ≥ 0 be an array of nonnegative numbers. We give some criteria for the linear transformation y n ( q ) = ∑ k = 0 n T n , k x k ( q ) preserving the strong q -log-convexity (resp. log-convexity). As applications, we derive that some linear transformations (for instance, the Stirling transformations of two kinds, the Jacobi–Stirling transformations of two kinds, the Legendre–Stirling transformations of two kinds, the central factorial transformations, and so on) preserve the strong q -log-convexity (resp. log-convexity) in a unified manner. In particular, we confirm a conjecture of Lin and Zeng, and extend some results of Chen et al., and Zhu for strong q -log-convexity of polynomials, and some results of Liu and Wang for transformations preserving the log-convexity. The stability property of iterated polynomials implies the q -log-convexity. By applying the method of interlacing of zeros, we also present two criteria for the stability of the iterated Sturm sequences and q -log-convexity of polynomials. As consequences, we get the stabilities of iterated Eulerian polynomials of types A and B , and their q -analogs. In addition, we also prove that the generating functions of alternating runs of types A and B , the longest alternating subsequence and up–down runs of permutations form a q -log-convex sequence, respectively.

[1]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[2]  Lynne M. Butler,et al.  The q-log-concavity of q-binomial coefficients , 1990, J. Comb. Theory, Ser. A.

[3]  Peter W. Shor,et al.  A New Proof of Cayley's Formula for Counting Labeled Trees , 1995, J. Comb. Theory, Ser. A.

[4]  F. Brenti,et al.  Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .

[5]  Yeong-Nan Yeh,et al.  Polynomials with real zeros and Po'lya frequency sequences , 2005, J. Comb. Theory, Ser. A.

[6]  D. Foata,et al.  Theorie Geometrique des Polynomes Euleriens , 1970 .

[7]  R. Stanley Longest alternating subsequences of permutations , 2005, math/0511419.

[8]  Bruce E. Sagan LOG CONCAVE SEQUENCES OF SYMMETRIC FUNCTIONS AND ANALOGS OF THE JACOBI-TRUDI DETERMINANTS , 1992 .

[9]  Bao-Xuan Zhu,et al.  Strong q-log-convexity of the Eulerian polynomials of Coxeter groups , 2014, Discret. Math..

[10]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[11]  Shi-Mei Ma,et al.  Derivative polynomials and enumeration of permutations by number of interior and left peaks , 2012, Discret. Math..

[12]  William Y. C. Chen,et al.  The q-log-convexity of the Narayana polynomials of type B , 2010, Adv. Appl. Math..

[13]  John Riordan,et al.  Inverse Relations and Combinatorial Identities , 1964 .

[14]  M. Aigner,et al.  Motzkin Numbers , 1998, Eur. J. Comb..

[15]  Francesco Brenti,et al.  q-Eulerian Polynomials Arising from Coxeter Groups , 1994, Eur. J. Comb..

[16]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[17]  Bao-Xuan Zhu,et al.  Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices , 2017, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  M. Marden Geometry of Polynomials , 1970 .

[19]  Lance L. Littlejohn,et al.  Legendre polynomials, Legendre--Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression , 2002 .

[20]  Pietro Mongelli,et al.  Total positivity properties of Jacobi-Stirling numbers , 2012, Adv. Appl. Math..

[21]  Bao-Xuan Zhu,et al.  Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..

[22]  Miklós Bóna Combinatorics of Permutations, Second Edition , 2012, Discrete mathematics and its applications.

[23]  Francesco Brenti,et al.  A Class of q-Symmetric Functions Arising from Plethysm , 2000, J. Comb. Theory, Ser. A.

[24]  Shi-Mei Ma,et al.  Enumeration of permutations by number of alternating runs , 2011, Discret. Math..

[25]  Yi Wang,et al.  A unified approach to polynomial sequences with only real zeros , 2005, Adv. Appl. Math..

[26]  George Polya,et al.  On The Product of Two Power Series , 1949, Canadian Journal of Mathematics.

[27]  Arthur L. B. Yang,et al.  Schur positivity and the q-log-convexity of the Narayana polynomials , 2008, 0806.1561.

[28]  Yeong-Nan Yeh,et al.  Log-concavity and LC-positivity , 2007, J. Comb. Theory, Ser. A.

[29]  Ya-Nan Li,et al.  Recurrence Relations for the Linear Transformation Preserving the Strong q-Log-Convexity , 2016, Electron. J. Comb..

[30]  Martin Aigner,et al.  Catalan-like Numbers and Determinants , 1999, J. Comb. Theory, Ser. A.

[31]  Yi Wang,et al.  q-Eulerian Polynomials and Polynomials with Only Real Zeros , 2006, Electron. J. Comb..

[32]  George E. Andrews,et al.  The Jacobi-Stirling numbers , 2011, J. Comb. Theory, Ser. A.

[33]  Yi Wang,et al.  Proof of a Conjecture of Ehrenborg and Steingrímsson on Excedance Statistic , 2002, Eur. J. Comb..

[34]  Jiang Zeng,et al.  Positivity properties of Jacobi-Stirling numbers and generalized Ramanujan polynomials , 2013, Adv. Appl. Math..

[35]  D. Wagner,et al.  Total positivity of Hadamard products , 1992 .

[36]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[37]  T. Liggett,et al.  Negative dependence and the geometry of polynomials , 2007, 0707.2340.

[38]  Bao-Xuan Zhu,et al.  Some positivities in certain triangular arrays , 2014 .

[39]  Eric S. Egge,et al.  Legendre-Stirling permutations , 2010, Eur. J. Comb..

[40]  Gangjoon Yoon,et al.  Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression , 2007 .

[41]  Hua Sun,et al.  Linear Transformations Preserving the Strong $q$-log-convexity of Polynomials , 2015, Electron. J. Comb..

[42]  Li Liu,et al.  On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..

[43]  Petter Brändén,et al.  On linear transformations preserving the Polya frequency property , 2004 .

[44]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[45]  Pierre Leroux,et al.  Reduced matrices and q-log-concavity properties of q-Stirling numbers , 1990, J. Comb. Theory A.

[46]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[47]  George E. Andrews,et al.  A combinatorial interpretation of the Legendre-Stirling numbers , 2009 .

[48]  Steve Fisk Polynomials, roots, and interlacing , 2006 .

[49]  Arthur L. B. Yang,et al.  Recurrence Relations for Strongly q-Log-Convex Polynomials , 2008, Canadian Mathematical Bulletin.