A nonabelian Fourier transform for tempered unipotent representations
暂无分享,去创建一个
[1] Mark Reeder. Euler–Poincaré Pairings and Elliptic Representations of Weyl Groups and p-Adic Groups , 2001, Compositio Mathematica.
[2] M. Geck,et al. The Character Theory of Finite Groups of Lie Type , 2020 .
[3] G. Lusztig. Classification of unipotent representations of simple p -adic groups , 1995 .
[4] D. Kazhdan,et al. Proof of the Deligne-Langlands conjecture for Hecke algebras , 1987 .
[5] George Lusztig,et al. Characters of reductive groups over a finite field , 1984 .
[6] J. Waldspurger. Représentations de réduction unipotente pour SO(2n+1), I: une involution , 2016 .
[7] T. Haines. The stable Bernstein center and test functions for Shimura varieties , 2013, 1304.6293.
[8] G. Lusztig. Intersection cohomology complexes on a reductive group , 1984 .
[9] D. Ciubotaru,et al. On the elliptic nonabelian Fourier transform for unipotent representations of p-adic groups , 2016, 1604.00604.
[10] Ulrich Görtz. James Arthur: “The Endoscopic Classification of Representations. Orthogonal and Symplectic Groups” , 2014, Jahresbericht der Deutschen Mathematiker-Vereinigung.
[11] C. Mœglin,et al. Paquets stables de représentations tempérées et de réduction unipotente pour SO(2n+1) , 2003 .
[12] Jacques Tits,et al. Groupes réductifs sur un corps local , 1972 .
[13] D. Kazhdan,et al. Trace paley-wiener theorem for reductivep-adic groups , 1986 .
[14] N. Chriss,et al. INTRODUCTION TO THE THEORY OF ADMISSIBLE REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS , 2008 .
[15] D. Ciubotaru,et al. Cocenters of p-adic Groups, III: Elliptic and Rigid Cocenters , 2017, Peking Mathematical Journal.
[16] N. Iwahori,et al. On some bruhat decomposition and the structure of the hecke rings of p-Adic chevalley groups , 1965 .
[17] R. Kottwitz. STABLE TRACE FORMULA: CUSPIDAL TEMPERED TERMS , 1984 .
[18] Dan Ciubotaru. The nonabelian Fourier transform for elliptic unipotent representations of exceptional $p$-adic groups , 2020, 2006.13540.
[19] P. Baum,et al. The local Langlands correspondence for inner forms of SL$$_{n}$$n , 2013, 1305.2638.
[20] Mark Reeder. Isogenies of Hecke algebras and a Langlands correspondence for ramified principal series representations , 2002 .
[21] J. Waldspurger. Produit scalaire elliptique , 2007 .
[22] M. Kneser. Galois-Kohomologie halbeinfacher algebraischer Gruppen über p-adischen Körpern. II , 1965 .
[23] Jean-François Dat. On the K0 of a p-adic group , 2000 .
[24] Tasho Kaletha. The Local Langlands Conjectures for Non-quasi-split Groups , 2016 .
[25] E. Opdam,et al. Homological algebra for affine Hecke algebras , 2007, 0708.1372.
[26] Frank Lübeck,et al. Formal degrees and L--packets of unipotent discrete series representations of exceptional p--adic groups , 2000 .
[27] Tasho Kaletha. Global rigid inner forms and multiplicities of discrete automorphic representations , 2015, 1501.01667.
[28] Roger W. Carter,et al. Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .
[29] Springer-Verlag. UNIPOTENT ALMOST CHARACTERS OF SIMPLE p-ADIC GROUPS, II CHARACTERS OF SIMPLE p-ADIC , 2014 .
[30] 齋藤 裕,et al. On L-packets for inner forms of SLn , 2012 .
[31] On Lusztig’s parametrization of characters of finite Groups of Lie type , 2019 .
[32] A. Aubert,et al. Generalizations of the Springer correspondence and cuspidal Langlands parameters , 2015, 1511.05335.
[33] J. Arthur. A Note on L-packets , 2006 .
[34] T. A. Springer,et al. Seminar on Algebraic Groups and Related Finite Groups , 1970 .
[35] William M. McGovern,et al. Nilpotent orbits in semisimple Lie algebras , 1993 .