A field consistent three‐noded quadratic curved axisymmetric shell element
暂无分享,去创建一个
[1] S. Timoshenko,et al. THEORY OF PLATES AND SHELLS , 1959 .
[2] G. A. Miles,et al. A curved element approximation in the analysis of axi-symmetric thin shells , 1970 .
[3] R. Delpak,et al. Role of the curved parametric element in linear analysis of thin rotational shells , 1975 .
[4] G. Venkateswara Rao,et al. Finite element analysis of moderately thick shells , 1975 .
[5] A. Mawenya. Quadratic isoparametric circular plate element with strain smoothing , 1976 .
[6] O. C. Zienkiewicz,et al. A simple and efficient element for axisymmetric shells , 1977 .
[7] Gangan Prathap,et al. Reduced integration and the shear-flexible beam element , 1982 .
[8] G. A. Mohr. Application of penalty functions to a curved isoparametric axisymmetric thick shell element , 1982 .
[9] Gangan Prathap,et al. An optimally integrated four‐node quadrilateral plate bending element , 1983 .
[10] J. Kirkhope,et al. Least squares strain smoothing for the eight‐node serendipity plane stress element , 1984 .
[11] G. Prathap. A discussion on “application of penalty functions to a curved isoparametric thick shell element” by G. A. Mohr[1] , 1984 .
[12] Gangan Prathap,et al. The curved beam/deep arch/finite ring element revisited , 1985 .
[13] Gangan Prathap,et al. An additional stiffness parameter measure of error of the second kind in the finite element method , 1985 .
[14] Gangan Prathap,et al. The poor bending response of the four‐node plane stress quadrilateral , 1985 .