A field consistent three‐noded quadratic curved axisymmetric shell element

A curved three-noded quadratic isoparametric axisymmetric thick shell element is developed. Field-consistency interpretations allow various configurations of the element to be designed so as to satisfy specific problem needs. Typical applications demonstrate the versatility and accuracy of this element in its different problem-specific forms.

[1]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[2]  G. A. Miles,et al.  A curved element approximation in the analysis of axi-symmetric thin shells , 1970 .

[3]  R. Delpak,et al.  Role of the curved parametric element in linear analysis of thin rotational shells , 1975 .

[4]  G. Venkateswara Rao,et al.  Finite element analysis of moderately thick shells , 1975 .

[5]  A. Mawenya Quadratic isoparametric circular plate element with strain smoothing , 1976 .

[6]  O. C. Zienkiewicz,et al.  A simple and efficient element for axisymmetric shells , 1977 .

[7]  Gangan Prathap,et al.  Reduced integration and the shear-flexible beam element , 1982 .

[8]  G. A. Mohr Application of penalty functions to a curved isoparametric axisymmetric thick shell element , 1982 .

[9]  Gangan Prathap,et al.  An optimally integrated four‐node quadrilateral plate bending element , 1983 .

[10]  J. Kirkhope,et al.  Least squares strain smoothing for the eight‐node serendipity plane stress element , 1984 .

[11]  G. Prathap A discussion on “application of penalty functions to a curved isoparametric thick shell element” by G. A. Mohr[1] , 1984 .

[12]  Gangan Prathap,et al.  The curved beam/deep arch/finite ring element revisited , 1985 .

[13]  Gangan Prathap,et al.  An additional stiffness parameter measure of error of the second kind in the finite element method , 1985 .

[14]  Gangan Prathap,et al.  The poor bending response of the four‐node plane stress quadrilateral , 1985 .