Certifiable quantum dice

We introduce a protocol through which a pair of quantum mechanical devices may be used to generate n random bits that are ϵ-close in statistical distance from n uniformly distributed bits, starting from a seed of uniform bits. The bits generated are certifiably random, based only on a simple statistical test that can be performed by the user, and on the assumption that the devices obey the no-signalling principle. No other assumptions are placed on the devices' inner workings: it is not necessary to even assume the validity of quantum mechanics.

[1]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[2]  Stefano Pironio,et al.  Security of practical private randomness generation , 2011, 1111.6056.

[3]  Umesh V. Vazirani,et al.  Certifiable quantum dice: or, true random number generation secure against quantum adversaries , 2012, STOC '12.

[4]  Serge Fehr,et al.  Security and Composability of Randomness Expansion from Bell Inequalities , 2011, ArXiv.

[5]  Adrian Kent,et al.  Private randomness expansion with untrusted devices , 2010, 1011.4474.

[6]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[7]  Cristian S. Calude,et al.  Experimental Evidence of Quantum Randomness Incomputability , 2010, ArXiv.

[8]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[9]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[10]  Venkatesan Guruswami,et al.  Unbalanced expanders and randomness extractors from Parvaresh--Vardy codes , 2009, JACM.

[11]  Enkatesan G Uruswami,et al.  Unbalanced expanders and randomness extractors from , 2008 .

[12]  Enkatesan G Uruswami Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes , 2008 .

[13]  Oded Goldreich,et al.  Pseudorandom Generators: A Primer , 2008 .

[14]  W. Munro,et al.  Secure self-calibrating quantum random-bit generator , 2006, quant-ph/0612112.

[15]  Gui-Lu Long,et al.  Scheme for a quantum random number generator , 2006 .

[16]  Gilles Brassard,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Correct? , 2006 .

[17]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[18]  A. Yao,et al.  Self testing quantum apparatus , 2003, Quantum Inf. Comput..

[19]  B. Terhal Is entanglement monogamous? , 2003, IBM J. Res. Dev..

[20]  Ronen Shaltiel,et al.  Recent Developments in Explicit Constructions of Extractors , 2002, Bull. EATCS.

[21]  Peter Bro Miltersen,et al.  On Pseudorandom Generators in NC , 2001, MFCS.

[22]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[23]  N. Gisin,et al.  Optical quantum random number generator , 1999, quant-ph/9907006.

[24]  David Zuckerman,et al.  General weak random sources , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[25]  K. Svozil The quantum coin toss-testing microphysical undecidability , 1990 .

[26]  Miklos Santha,et al.  Generating Quasi-Random Sequences from Slightly-Random Sources (Extended Abstract) , 1984, FOCS.

[27]  Martin Campbell-Kelly,et al.  Programming the Mark I: Early Programming Activity at the University of Manchester , 1980, Annals of the History of Computing.

[28]  Joseph F. Traub,et al.  Algorithms and Complexity: New Directions and Recent Results , 1976 .

[29]  Andrew Chi-Chih Yao,et al.  The complexity of nonuniform random number generation , 1976 .

[30]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[31]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[32]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .