Inverse design of an isotropic suspended Kirchhoff rod: theoretical and numerical results on the uniqueness of the natural shape

Solving the equations for Kirchhoff elastic rods has been widely explored for decades in mathematics, physics and computer science, with significant applications in the modelling of thin flexible structures such as DNA, hair or climbing plants. As demonstrated in previous experimental and theoretical studies, the natural curvature plays an important role in the equilibrium shape of a Kirchhoff rod, even in the simple case where the rod is isotropic and suspended under gravity. In this paper, we investigate the reverse problem: can we characterize the natural curvature of a suspended isotropic rod, given an equilibrium curve? We prove that although there exists an infinite number of natural curvatures that are compatible with the prescribed equilibrium, they are all equivalent in the sense that they correspond to a unique natural shape for the rod. This natural shape can be computed efficiently by solving in sequence three linear initial value problems, starting from any framing of the input curve. We provide several numerical experiments to illustrate this uniqueness result, and finally discuss its potential impact on non-invasive parameter estimation and inverse design of thin elastic rods.

[1]  Sébastien Neukirch,et al.  Mechanics of climbing and attachment in twining plants. , 2006, Physical review letters.

[2]  B. Audoly,et al.  Shapes of a suspended curly hair. , 2014, Physical review letters.

[3]  Eitan Grinspun,et al.  Discrete elastic rods , 2008, ACM Trans. Graph..

[4]  N. Perkins,et al.  Nonlinear dynamics and loop formation in Kirchhoff rods with implications to the mechanics of DNA and cables , 2005 .

[5]  G. Kirchhoff,et al.  Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. , 1859 .

[6]  Kun Zhou,et al.  An asymptotic numerical method for inverse elastic shape design , 2014, ACM Trans. Graph..

[7]  Alain Goriely,et al.  Tendril Perversion in Intrinsically Curved Rods , 2002, J. Nonlinear Sci..

[8]  Ágnes Nagy Density and Pair Density Scaling in Density and Pair Density Functional Theories , 2011 .

[9]  Alberto Cardona,et al.  Finite element modelling of inverse design problems in large deformations anisotropic hyperelasticity , 2008 .

[10]  Emilio Turco,et al.  Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives , 2017 .

[11]  Joëlle Thollot,et al.  3D inverse dynamic modeling of strands , 2011, SIGGRAPH '11.

[12]  G. Gladwell The inverse problem for the Euler-Bernoulli beam , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Sébastien Neukirch,et al.  Extracting DNA twist rigidity from experimental supercoiling data. , 2004, Physical review letters.

[14]  Joëlle Thollot,et al.  Stable inverse dynamic curves , 2010, ACM Trans. Graph..

[15]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[16]  Christopher D. Twigg,et al.  Optimization for sag-free simulations , 2011, SCA '11.

[17]  Tetsuro Yabuta,et al.  Submarine Cable Kink Analysis , 1984 .

[18]  Alejandro Blumentals,et al.  Numerical modelling of thin elastic solids in contact. (Modélisation numérique de solides élastiques minces en contact) , 2017 .

[19]  E. Dill,et al.  Kirchhoff's theory of rods , 1992 .

[20]  Joëlle Thollot,et al.  Inverse dynamic hair modeling with frictional contact , 2013, ACM Trans. Graph..

[21]  Marc Bonnet,et al.  Inverse problems in elasticity , 2005 .

[22]  Alberto Cardona,et al.  Inverse finite element method for large-displacement beams , 2010 .

[23]  S. P. Mielke,et al.  DNA mechanics. , 2005, Annual review of biomedical engineering.

[24]  Marie-Paule Cani,et al.  Super-helices for predicting the dynamics of natural hair , 2006, SIGGRAPH 2006.

[25]  J. Maddocks,et al.  DNA rings with multiple energy minima. , 2000, Biophysical journal.

[26]  Martín A. Pucheta,et al.  A new method to design compliant mechanisms based on the inverse beam finite element model , 2013 .

[27]  Miguel A. Otaduy,et al.  Design and fabrication of flexible rod meshes , 2015, ACM Trans. Graph..

[28]  Dinesh K. Pai,et al.  STRANDS: Interactive Simulation of Thin Solids using Cosserat Models , 2002, Comput. Graph. Forum.

[29]  James F. O'Brien,et al.  Interactive simulation of surgical needle insertion and steering , 2009, ACM Trans. Graph..

[30]  P. Reis,et al.  Contorting a heavy and naturally curved elastic rod , 2013 .

[31]  Michel Kern Problèmes inverses : aspects numériques , 2002 .

[32]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[33]  M. Tabor,et al.  Spontaneous Helix Hand Reversal and Tendril Perversion in Climbing Plants , 1998 .

[34]  Joel Langer,et al.  Lagrangian Aspects of the Kirchhoff Elastic Rod , 1996, SIAM Rev..

[35]  Joëlle Thollot,et al.  Floating tangents for approximating spatial curves with G1 piecewise helices , 2013, Comput. Aided Geom. Des..

[36]  Eitan Grinspun,et al.  Coiling of elastic rods on rigid substrates , 2014, Proceedings of the National Academy of Sciences.

[37]  Keith A. Woodbury,et al.  Inverse problems and parameter estimation: integration of measurements and analysis , 1998 .

[38]  S. Antman Nonlinear problems of elasticity , 1994 .

[39]  A. Champneys,et al.  Spatially complex localization after one-twist-per-wave equilibria in twisted circular rods with initial curvature , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.