Volume growth, capacity estimates, $p$-parabolicity and sharp integrability properties of $p$-harmonic Green functions
暂无分享,去创建一个
[1] Harnack inequality and hyperbolicity for subelliptic p-Laplacians with applications to Picard type theorems , 2001 .
[2] Anders Björn. Characterizations of p-superharmonic functions on metric spaces , 2005 .
[3] M. Parviainen,et al. Lebesgue points and the fundamental convergence theorem for superharmonic functions on metric spaces , 2010 .
[4] POWER-TYPE QUASIMINIMIZERS , 2011 .
[5] Pekka Koskela,et al. Sobolev met Poincaré , 2000 .
[6] N. Shanmugalingam,et al. Regularity of quasi-minimizers on metric spaces , 2001 .
[7] C. Kenig,et al. The Wiener test for degenerate elliptic equations , 1982 .
[8] Anders Bjorn,et al. The variational capacity with respect to nonopen sets in metric spaces , 2012, 1210.0352.
[9] Anders Björn,et al. Local and semilocal Poincaré inequalities on metric spaces , 2018, Journal de Mathématiques Pures et Appliquées.
[10] J. Heinonen,et al. Quasiconformal maps in metric spaces with controlled geometry , 1998 .
[11] T. Kilpeläinen,et al. Degenerate elliptic equations with measure data and nonlinear potentials , 1992 .
[12] D. Danielli,et al. Local Behavior of p-harmonic Green’s Functions in Metric Spaces , 2008, 0807.1323.
[13] Tero Mäkäläinen. Nonlinear potential theory on metric spaces , 2008 .
[14] Juha Lehrback,et al. Sharp capacity estimates for annuli in weighted R^n and in metric spaces , 2013, 1312.1668.
[15] Anders Björn. A weak Kellogg property for quasiminimizers , 2006 .
[16] Ur Mathematik,et al. NONLINEAR POTENTIAL THEORY ON METRIC SPACES , 2008 .
[17] Takanobu Hara. The Wolff potential estimate for solutions to elliptic equations with signed data , 2016 .
[18] N. Shanmugalingam,et al. NON-CONFORMAL LOEWNER TYPE ESTIMATES FOR MODULUS OF CURVE FAMILIES , 2010 .
[19] L. Capogna,et al. Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations , 1996 .
[20] N. Shanmugalingam,et al. Polar sets on metric spaces , 2005 .
[21] I. Holopainen. Nonlinear potential theory and quasiregular mappings on Riemannian manifolds , 1990 .
[22] Removable singularities for bounded p-harmonic and quasi (super) harmonic functions on metric spaces , 2004 .
[23] Alexander Grigor'yan,et al. Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds , 1999 .
[24] Jana Björn. POINCAR ¶ E INEQUALITIES FOR POWERS AND PRODUCTS OF ADMISSIBLE WEIGHTS , 2001 .
[25] Volume growth and parabolicity , 2001 .
[26] Giuseppe Mingione,et al. Guide to nonlinear potential estimates , 2014, Bulletin of mathematical sciences.
[27] V. Gol'dshtein,et al. Quasiconformal Mappings and Sobolev Spaces , 1990 .
[28] O. Martio,et al. Sobolev space properties of superharmonic functions on metric spaces , 2003 .
[29] Positive Solutions of Quasilinear Elliptic Equations on Riemannian Manifolds , 1992 .
[30] Dachun Yang,et al. Sobolev Spaces on Metric Measure Spaces , 2014 .
[31] Takanobu Hara. Wolff potential estimates for Cheeger p-harmonic functions , 2018 .
[32] I. Holopainen. Volume growth, Green’s functions, and parabolicity of ends , 1999 .
[33] T. Kilpeläinen,et al. The Wiener test and potential estimates for quasilinear elliptic equations , 1994 .
[34] G. Stampacchia,et al. Regular points for elliptic equations with discontinuous coefficients , 1963 .
[35] X. Zhong,et al. The Poincare inequality is an open ended condition , 2008 .
[36] T. Kuusi,et al. Vectorial nonlinear potential theory , 2018 .
[37] V. A. Zorich,et al. On the conformal type of a Riemannian manifold , 1996 .
[38] N. Shanmugalingam,et al. Fat sets and pointwise boundary estimates forp-harmonic functions in metric spaces , 2001 .
[39] Anders Björn,et al. Resolutivity and invariance for the Perron method for degenerate equations of divergence type , 2020, Journal of Mathematical Analysis and Applications.
[40] Enrico Giusti,et al. On the regularity of the minima of variational integrals , 1982 .
[41] I. Holopainen,et al. Singular functions on metric measure spaces. , 2002 .
[42] N. Shanmugalingam. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces , 2000 .
[43] Satyanad Kichenassamy,et al. Singular Solutions of the p-Laplace Equation (Erratum). , 1987 .
[44] James Serrin,et al. Local behavior of solutions of quasi-linear equations , 1964 .