Volume growth, capacity estimates, $p$-parabolicity and sharp integrability properties of $p$-harmonic Green functions

In a complete metric space equipped with a doubling measure supporting a pPoincaré inequality, we prove sharp growth and integrability results for p-harmonic Green functions and their minimal p-weak upper gradients. We show that these properties are determined by the growth of the underlying measure near the singularity. Corresponding results are obtained also for more general p-harmonic functions with poles, as well as for singular solutions of elliptic differential equations in divergence form on weighted Rn and on manifolds. The proofs are based on a new general capacity estimate for annuli, which implies precise pointwise estimates for p-harmonic Green functions. The capacity estimate is valid under considerably milder assumptions than above. We also use it, under these milder assumptions, to characterize singletons of zero capacity and the p-parabolicity of the space. This generalizes and improves earlier results that have been important especially in the context of Riemannian manifolds.

[1]  Harnack inequality and hyperbolicity for subelliptic p-Laplacians with applications to Picard type theorems , 2001 .

[2]  Anders Björn Characterizations of p-superharmonic functions on metric spaces , 2005 .

[3]  M. Parviainen,et al.  Lebesgue points and the fundamental convergence theorem for superharmonic functions on metric spaces , 2010 .

[4]  POWER-TYPE QUASIMINIMIZERS , 2011 .

[5]  Pekka Koskela,et al.  Sobolev met Poincaré , 2000 .

[6]  N. Shanmugalingam,et al.  Regularity of quasi-minimizers on metric spaces , 2001 .

[7]  C. Kenig,et al.  The Wiener test for degenerate elliptic equations , 1982 .

[8]  Anders Bjorn,et al.  The variational capacity with respect to nonopen sets in metric spaces , 2012, 1210.0352.

[9]  Anders Björn,et al.  Local and semilocal Poincaré inequalities on metric spaces , 2018, Journal de Mathématiques Pures et Appliquées.

[10]  J. Heinonen,et al.  Quasiconformal maps in metric spaces with controlled geometry , 1998 .

[11]  T. Kilpeläinen,et al.  Degenerate elliptic equations with measure data and nonlinear potentials , 1992 .

[12]  D. Danielli,et al.  Local Behavior of p-harmonic Green’s Functions in Metric Spaces , 2008, 0807.1323.

[13]  Tero Mäkäläinen Nonlinear potential theory on metric spaces , 2008 .

[14]  Juha Lehrback,et al.  Sharp capacity estimates for annuli in weighted R^n and in metric spaces , 2013, 1312.1668.

[15]  Anders Björn A weak Kellogg property for quasiminimizers , 2006 .

[16]  Ur Mathematik,et al.  NONLINEAR POTENTIAL THEORY ON METRIC SPACES , 2008 .

[17]  Takanobu Hara The Wolff potential estimate for solutions to elliptic equations with signed data , 2016 .

[18]  N. Shanmugalingam,et al.  NON-CONFORMAL LOEWNER TYPE ESTIMATES FOR MODULUS OF CURVE FAMILIES , 2010 .

[19]  L. Capogna,et al.  Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations , 1996 .

[20]  N. Shanmugalingam,et al.  Polar sets on metric spaces , 2005 .

[21]  I. Holopainen Nonlinear potential theory and quasiregular mappings on Riemannian manifolds , 1990 .

[22]  Removable singularities for bounded p-harmonic and quasi (super) harmonic functions on metric spaces , 2004 .

[23]  Alexander Grigor'yan,et al.  Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds , 1999 .

[24]  Jana Björn POINCAR ¶ E INEQUALITIES FOR POWERS AND PRODUCTS OF ADMISSIBLE WEIGHTS , 2001 .

[25]  Volume growth and parabolicity , 2001 .

[26]  Giuseppe Mingione,et al.  Guide to nonlinear potential estimates , 2014, Bulletin of mathematical sciences.

[27]  V. Gol'dshtein,et al.  Quasiconformal Mappings and Sobolev Spaces , 1990 .

[28]  O. Martio,et al.  Sobolev space properties of superharmonic functions on metric spaces , 2003 .

[29]  Positive Solutions of Quasilinear Elliptic Equations on Riemannian Manifolds , 1992 .

[30]  Dachun Yang,et al.  Sobolev Spaces on Metric Measure Spaces , 2014 .

[31]  Takanobu Hara Wolff potential estimates for Cheeger p-harmonic functions , 2018 .

[32]  I. Holopainen Volume growth, Green’s functions, and parabolicity of ends , 1999 .

[33]  T. Kilpeläinen,et al.  The Wiener test and potential estimates for quasilinear elliptic equations , 1994 .

[34]  G. Stampacchia,et al.  Regular points for elliptic equations with discontinuous coefficients , 1963 .

[35]  X. Zhong,et al.  The Poincare inequality is an open ended condition , 2008 .

[36]  T. Kuusi,et al.  Vectorial nonlinear potential theory , 2018 .

[37]  V. A. Zorich,et al.  On the conformal type of a Riemannian manifold , 1996 .

[38]  N. Shanmugalingam,et al.  Fat sets and pointwise boundary estimates forp-harmonic functions in metric spaces , 2001 .

[39]  Anders Björn,et al.  Resolutivity and invariance for the Perron method for degenerate equations of divergence type , 2020, Journal of Mathematical Analysis and Applications.

[40]  Enrico Giusti,et al.  On the regularity of the minima of variational integrals , 1982 .

[41]  I. Holopainen,et al.  Singular functions on metric measure spaces. , 2002 .

[42]  N. Shanmugalingam Newtonian spaces: An extension of Sobolev spaces to metric measure spaces , 2000 .

[43]  Satyanad Kichenassamy,et al.  Singular Solutions of the p-Laplace Equation (Erratum). , 1987 .

[44]  James Serrin,et al.  Local behavior of solutions of quasi-linear equations , 1964 .