Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application

Abstract Na-ion batteries were tested with layered Na(Ni1/3Fe1/3Mn1/3)O2 cathodes and carbon anodes in a sodium-salt containing organic ester carbonate electrolyte. Layered single phase Na(Ni1/3Fe1/3Mn1/3)O2 was synthesized from solid-state reaction using a (Ni1/3Fe1/3Mn1/3)C2O4 oxalate precursor and Na2CO3 fired at 850 °C with slow-cooling. The Na-ion NayC/Na1 − y(Ni1/3Fe1/3Mn1/3)O2 cell had an average voltage of ~ 2.75 V, modest capacity of 100 mA h g− 1 for 150 cycles (1.5–4.0 V), and a capacity of 94 mA h g− 1 at a 1 °C rate. X-ray diffraction (XRD) data of extracted cycled electrodes were used to characterize material stability and phases formed upon cycling. It was found that Na1 − y(Ni1/3Fe1/3Mn1/3)O2 (0 ≤ y ≤ 0.46) maintains a layered structure with good crystallinity over 150 cycles. These results bode well for the development and optimization of rechargeable Na-ion batteries.

[1]  C. Delmas,et al.  Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2 , 2010 .

[2]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[3]  Investigation of the new P'3-Na0.60VO2 phase: structural and physical properties. , 2009, Inorganic chemistry.

[4]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[5]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[6]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[7]  J-M Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[8]  C. Delmas,et al.  Electrochemical Na-Deintercalation from NaVO2 , 2011 .

[9]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[10]  J. Dahn,et al.  Comparison of the Reactivity of NaxC6 and LixC6 with Non-Aqueous Solvents and Electrolytes , 2011 .

[11]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[12]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[13]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[14]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[15]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[16]  Marca M. Doeff,et al.  Orthorhombic Na x MnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries , 1994 .

[17]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[18]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[19]  Hui Xiong,et al.  Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. , 2012, ACS nano.

[20]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[21]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[22]  J. Dahn,et al.  NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes , 2012 .