Speed and power scaling of SRAM's

Simple models for the delay, power, and area of a static random access memory (SRAM) are used to determine the optimal organizations for an SRAM and study the scaling of their speed and power with size and technology. The delay is found to increase by about one gate delay for every doubling of the RAM size up to 1 Mb, beyond which the interconnect delay becomes an increasingly significant fraction of the total delay. With technology scaling, the nonscaling of threshold mismatches in the sense amplifiers is found to significantly impact the total delay in generations of 0.1 /spl mu/m and below.

[1]  T. Izawa,et al.  SP 22.4: A 1V 0.9mW at 100MHz 2kx16b SRAM utilizing a Half-Swing Pulsed-Decoder and Write-Bus Architecture in 0.25pm Dual-Vt CMOS , 1998 .

[2]  H. Shinohara,et al.  A 64Kb full CMOS RAM with divided word line structure , 1983, 1983 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[3]  K. Ishibashi,et al.  A 2 ns access, 285 MHz, two-port cache macro using double global bit-line pairs , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[4]  Norman P. Jouppi,et al.  WRL Research Report 93/5: An Enhanced Access and Cycle Time Model for On-chip Caches , 1994 .

[5]  A. Toriumi,et al.  Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET's , 1994 .

[6]  Kenichi Osada,et al.  SP 24.4: A 2ns Access, 285MHz, Two-Port Cache Macro using Double Global Bit-Line Pairs , 1997 .

[7]  J.D. Meindl,et al.  The impact of stochastic dopant and interconnect distributions on gigascale integration , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[8]  Ivan E. Sutherland,et al.  Logical effort: designing for speed on the back of an envelope , 1991 .

[9]  W. C. Elmore The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers , 1948 .

[10]  J.D. Meindl,et al.  Optimal interconnection circuits for VLSI , 1985, IEEE Transactions on Electron Devices.

[11]  T. Wada,et al.  An analytical access time model for on-chip cache memories , 1992 .

[12]  K. Ishibashi,et al.  A 6-ns 4-mb Cmos Sram With Offset-voltage-insensitive Current Sense Amplifiers , 1994, Proceedings of 1994 IEEE Symposium on VLSI Circuits.

[13]  Masayoshi Sasaki,et al.  A 9-ns 16-Mb CMOS SRAM with offset-compensated current sense amplifier , 1993 .

[14]  Rajiv V. Joshi,et al.  A 2-ns cycle, 3.8-ns access 512-kb CMOS ECL SRAM with a fully pipelined architecture , 1991 .

[15]  C. L. Portmann,et al.  Metastability in CMOS library elements in reduced supply and technology scaled applications , 1995 .

[16]  Noriyuki Suzuki,et al.  A 150 ns 16-Mb CMOS SRAM with interdigitated bit-line architecture , 1992 .

[17]  M. Usami,et al.  A 1.8 ns access, 550 MHz 4.5 Mb CMOS SRAM , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[18]  Paul D. Franzon,et al.  Energy consumption modeling and optimization for SRAM's , 1995, IEEE J. Solid State Circuits.

[19]  G. A. Sai-Halasz,et al.  Performance trends in high-end processors , 1995, Proc. IEEE.

[20]  A. Tuszynski,et al.  CMOS tapered buffer , 1990 .

[21]  Koichiro Ishibashi,et al.  A 6-ns 4-Mb CMOS SRAM with offset-voltage-insensitive current sense amplifiers , 1994 .

[22]  Bharadwaj Amrutur,et al.  A replica technique for wordline and sense control in low-power SRAM's , 1998, IEEE J. Solid State Circuits.

[23]  T. Izawa,et al.  A 1 V 0.9 mW at 100 MHz 2 k/spl times/16 b SRAM utilizing a half-swing pulsed-decoder and write-bus architecture in 0.25 /spl mu/m dual-Vt CMOS , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).