Locally Conformally Flat Lorentzian Gradient Ricci Solitons

It is shown that locally conformally flat Lorentzian gradient Ricci solitons are locally isometric to a Robertson–Walker warped product, if the gradient of the potential function is nonnull, and to a plane wave, if the gradient of the potential function is null. The latter gradient Ricci solitons are necessarily steady.

[1]  P. Petersen,et al.  RIGIDITY OF GRADIENT RICCI SOLITONS , 2007, 0710.3174.

[2]  William Wylie,et al.  On Gradient Ricci Solitons with Symmetry , 2007, 0710.3595.

[3]  D. Alekseevsky,et al.  Two-symmetric Lorentzian manifolds , 2010, 1011.3439.

[4]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[5]  W. Kühnel,et al.  Einstein Spaces with a Conformal Group , 2009 .

[6]  E. García‐Río,et al.  Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups , 2010, 1001.1994.

[7]  N. Šešum,et al.  On Gradient Ricci Solitons , 2009, 0910.1105.

[8]  Ralf Ponge,et al.  Twisted products in pseudo-Riemannian geometry , 1993 .

[9]  V. Patrangenaru Lorentz Manifolds with the Three Largest Degrees of Symmetry , 2003 .

[10]  A. G. Walker On Ruse's Spaces of Recurrent Curvature , 1950 .

[11]  Andrzej Derdzinski,et al.  Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds , 2007 .

[12]  E. García‐Río,et al.  A curvature condition for a twisted product¶to be a warped product , 2001 .

[13]  Kensuke Onda,et al.  Lorentz Ricci Solitons on 3-dimensional Lie groups , 2009, 0906.0086.

[14]  Thomas Leistner Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds , 2005 .

[15]  Shôshichi Kobayashi A Theorem on the Affine Transformation Group of a Riemannian Manifold , 1955, Nagoya Mathematical Journal.

[16]  J. Senovilla Second-order symmetric Lorentzian manifolds: I. Characterization and general results , 2006, math/0604113.

[17]  E. García‐Río,et al.  Ricci solitons on Lorentzian manifolds with large isometry groups , 2010, 1007.3397.

[18]  J. L. Flores,et al.  On General Plane Fronted Waves. Geodesics , 2002 .

[19]  H. W. Brinkmann Einstein spaces which are mapped conformally on each other , 1925 .

[20]  E. García‐Río,et al.  Rigidity of shrinking Ricci solitons , 2011 .

[21]  E. García‐Río,et al.  Three-dimensional Lorentzian homogeneous Ricci solitons , 2009, 0911.1247.

[22]  E. García‐Río,et al.  Some remarks on locally conformally flat static space–times , 2005 .

[23]  J. Senovilla,et al.  Complete classification of second-order symmetric spacetimes , 2010, 1001.3629.

[24]  Geodesics in semi-Riemannian manifolds: geometric properties and variational tools , 2006, math/0610144.

[25]  H. Cao,et al.  On locally conformally flat gradient steady Ricci solitons , 2009, 0909.2833.