Neutron diffraction study of magnetism in van der Waals layered MnBi2n Te3n+1

Two-dimensional van der Waals MnBi2n Te3n+1 (n = 1, 2, 3, 4) compounds have been recently found to be intrinsic magnetic topological insulators rendering quantum anomalous Hall effect and diverse topological states. Here, we summarize and compare the crystal and magnetic structures of this family, and discuss the effects of chemical composition on their magnetism. We found that a considerable fraction of Bi occupies at the Mn sites in MnBi2n Te3n+1 (n = 1, 2, 3, 4) while there is no detectable Mn at the non-magnetic atomic sites within the resolution of neutron diffraction experiments. The occupancy of Mn monotonically decreases with the increase of n. The polarized neutron diffraction on the representative MnBi4Te7 reveals that its magnetization density is exclusively accumulated at the Mn site, in good agreement with the results from the unpolarized neutron diffraction. The defects of Bi at the Mn site naturally explain the continuously reduced saturated magnetic moments from n = 1 to n = 4. The experimentally estimated critical exponents of all the compounds generally suggest a three-dimensional character of magnetism. Our work provides material-specified structural parameters that may be useful for band structure calculations to understand the observed topological surface states and for designing quantum magnetic materials through chemical doping.

[1]  M. Blanco-Rey,et al.  Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family , 2020, npj Quantum Materials.

[2]  Jiaqiang Yan,et al.  Robust A-Type Order and Spin-Flop Transition on the Surface of the Antiferromagnetic Topological Insulator MnBi_{2}Te_{4}. , 2020, Physical review letters.

[3]  H. Hosono,et al.  Toward 2D Magnets in the (MnBi2Te4)(Bi2Te3)n Bulk Crystal , 2020, Advanced materials.

[4]  H. Miao,et al.  Coexistence of Surface Ferromagnetism and a Gapless Topological State in MnBi_{2}Te_{4}. , 2020, Physical review letters.

[5]  Ying Dai,et al.  Stacking-dependent topological phase in bilayer MBi2Te4(M=Ge,Sn,Pb) , 2020 .

[6]  Jiaqiang Yan,et al.  Realizing gapped surface states in the magnetic topological insulator MnBi2−xSbxTe4 , 2020, 2003.00180.

[7]  M. Ruck,et al.  Crystal Chemistry and Bonding Patterns of Bismuth-Based Topological Insulators. , 2020, Inorganic chemistry.

[8]  K. Sobczak,et al.  High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice , 2020, 2001.10579.

[9]  Jiaqiang Yan,et al.  Intrinsic axion insulating behavior in antiferromagnetic MnBi6Te10 , 2019, 1910.14626.

[10]  Su-Yang Xu,et al.  Realization of an intrinsic ferromagnetic topological state in MnBi8Te13 , 2019, Science Advances.

[11]  C. F. Zhang,et al.  Universal gapless Dirac cone and tunable topological states in (MnBi2Te4)m(Bi2Te3)n heterostructures , 2019, Physical Review B.

[12]  Jiaqiang Yan,et al.  A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals , 2019, 1910.06273.

[13]  Jiaqiang Yan,et al.  Competing Magnetic Interactions in the Antiferromagnetic Topological Insulator MnBi_{2}Te_{4}. , 2019, Physical review letters.

[14]  Jiaqiang Yan,et al.  Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4 , 2019, Physical Review B.

[15]  Qihang Liu,et al.  A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling , 2019, Nature Communications.

[16]  Craig M. Brown,et al.  Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state. , 2019, Physical review. B.

[17]  A. Gukasov,et al.  Local magnetic anisotropy by polarized neutron powder diffraction: Application of magnetically induced preferred crystallite orientation , 2019, Physical Review Research.

[18]  M. Blanco-Rey,et al.  Variety of magnetic topological phases in the (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_m$ family , 2019, 1910.11653.

[19]  F. Ye,et al.  Crystal and magnetic structures of magnetic topological insulatorsMnBi2Te4andMnBi4Te7 , 2019, 1910.06248.

[20]  Timur K. Kim,et al.  Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001) , 2019, Physical Review B.

[21]  Shik Shin,et al.  Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1 , 2019, Physical Review X.

[22]  C. Chen,et al.  Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4 , 2019, Physical Review X.

[23]  Yuan Wang,et al.  Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4 , 2019, Physical Review X.

[24]  J. van den Brink,et al.  Topological Electronic Structure and Intrinsic Magnetization in MnBi4Te7 : A Bi2Te3 Derivative with a Periodic Mn Sublattice , 2019, Physical Review X.

[25]  B. Büchner,et al.  Layered Manganese Bismuth Tellurides with GeBi4Te7– and GeBi6Te10–type Structures: Towards Multifunctional Materials , 2019, Journal of Materials Chemistry C.

[26]  E. Chulkov,et al.  Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure , 2019, Journal of Alloys and Compounds.

[27]  H. Hosono,et al.  Natural van der Waals heterostructural single crystals with both magnetic and topological properties , 2019, Science Advances.

[28]  S. Okamoto,et al.  Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4 , 2019, Physical Review B.

[29]  A. Bostwick,et al.  Massive Dirac Fermion at the Surface of the van der Waals Antiferromagnet MnBi$_2$Te$_4$ , 2019, 1903.11826.

[30]  Baigeng Wang,et al.  Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes , 2019, Nature Communications.

[31]  Q. Zhang,et al.  Crystal growth and magnetic structure of MnBi2Te4 , 2019, Physical Review Materials.

[32]  X. Wen Choreographed entanglement dances: Topological states of quantum matter , 2019, Science.

[33]  Yoshinori Tokura,et al.  Magnetic topological insulators , 2019, Nature Reviews Physics.

[34]  K. Nielsch,et al.  Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4 , 2018, Chemistry of Materials.

[35]  Yu Wang,et al.  Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4 , 2018, Physical Review Research.

[36]  V. N. Zverev,et al.  Prediction and observation of an antiferromagnetic topological insulator , 2018, Nature.

[37]  Bing-Lin Gu,et al.  Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials , 2018, Science Advances.

[38]  Haijun Zhang,et al.  Topological Axion States in the Magnetic Insulator MnBi_{2}Te_{4} with the Quantized Magnetoelectric Effect. , 2018, Physical review letters.

[39]  K. M. Andrews,et al.  DEMAND, a Dimensional Extreme Magnetic Neutron Diffractometer at the High Flux Isotope Reactor , 2018, Crystals.

[40]  Q. Xue,et al.  Topological Materials: Quantum Anomalous Hall System , 2018 .

[41]  B. Keimer,et al.  The physics of quantum materials , 2017, Nature Physics.

[42]  C. Lecomte,et al.  Spin density in YTiO 3 : I. Joint refinement of polarized neutron diffraction and magnetic x-ray diffraction data leading to insights into orbital ordering , 2017 .

[43]  M. Lumsden,et al.  Low-temperature crystal and magnetic structure of α -RuCl 3 , 2016, 1602.08112.

[44]  T. J. Hicks,et al.  Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3 , 2015 .

[45]  R. Valentí,et al.  Monoclinic crystal structure of α − RuCl 3 and the zigzag antiferromagnetic ground state , 2015, 1509.02670.

[46]  Emre S. Tasci,et al.  Symmetry-Based Computational Tools for Magnetic Crystallography , 2015 .

[47]  X. Qi,et al.  Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state , 2015, 1506.03141.

[48]  Y. Tokura,et al.  Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator , 2014, Nature Physics.

[49]  Cheol-hee Park,et al.  Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4 , 2013 .

[50]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[51]  Q. Gibson,et al.  Crystal structure and chemistry of topological insulators , 2013, 1302.1059.

[52]  J. S. Hicks,et al.  Four-circle single-crystal neutron diffractometer at the High Flux Isotope Reactor , 2011 .

[53]  Z. K. Liu,et al.  Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator , 2010, Science.

[54]  Joel E. Moore,et al.  Antiferromagnetic topological insulators , 2010, 1004.1403.

[55]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[56]  A. Taroni,et al.  Universal window for two-dimensional critical exponents , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[57]  J. Rodríguez-Carvajal,et al.  New insights on the microstructural characterisation of nickel hydroxides and correlation with electrochemical properties , 2006 .

[58]  A. Pelissetto,et al.  Critical phenomena and renormalization-group theory , 2000, cond-mat/0012164.

[59]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[60]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .

[61]  G. Shirane,et al.  The use of polarized neutrons in determining the magnetic scattering by iron and nickel , 1958 .

[62]  Edward Teller,et al.  X‐Ray Interference in Partially Ordered Layer Lattices , 1942 .