Partial Regeneration of Model TWC After High-Temperature Aging on Engine Bench

[1]  V. Bukhtiyarov,et al.  A low-temperature method for measuring oxygen storage capacity of ceria-containing oxides , 2016 .

[2]  A. Vedyagin,et al.  High Temperature Interaction of Rhodium with Oxygen Storage Component in Three-Way Catalysts , 2016, Topics in Catalysis.

[3]  R. Farrauto,et al.  Part I: A Comparative Thermal Aging Study on the Regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as Model Catalysts for Automotive Three Way Catalysts , 2015 .

[4]  M. Václavů,et al.  Impact of Rh–CeOx interaction on CO oxidation mechanisms , 2015 .

[5]  D. Ferri,et al.  A modulated excitation ED-EXAFS/DRIFTS study of hydrothermal ageing of Rh/Al2O3 , 2014 .

[6]  Karthik Ramanathan,et al.  Modeling and analysis of rapid catalyst aging cycles , 2014 .

[7]  M. Weilenmann,et al.  Operando XANES study of simulated transient cycles on a Pd-only three-way catalyst , 2013 .

[8]  L. Lisi,et al.  Sulphur tolerance of a P-doped Rh/γ-Al2O3 catalyst during the partial oxidation of methane to syngas , 2013 .

[9]  D. Ferri,et al.  Time resolved operando spectroscopic study of the origin of phosphorus induced chemical aging of model three-way catalysts Pd/Al2O3 , 2013 .

[10]  D. Weng,et al.  Comparative study of ageing condition effects on Pd/Ce0.5Zr0.5O2 and Pd/Al2O3 catalysts: Catalytic activity, palladium nanoparticle structure and Pd-support interaction , 2013 .

[11]  Louise Olsson,et al.  Hydrothermal Aging-Induced Changes in Washcoats of Commercial Three-Way Catalysts , 2013, Topics in Catalysis.

[12]  Sung Bong Kang,et al.  Effect of Aging Atmosphere on Thermal Sintering of Modern Commercial TWCs , 2013, Topics in Catalysis.

[13]  K. Polychronopoulou,et al.  Oxy-chlorination as an effective treatment of aged Pd/CeO2-Al2O3 catalysts for Pd redispersion , 2012 .

[14]  G. I. Aleshina,et al.  Characterization of Rh/Al2O3 catalysts after calcination at high temperatures under oxidizing conditions by luminescence spectroscopy and catalytic hydrogenolysis , 2009 .

[15]  M. Twigg Progress and future challenges in controlling automotive exhaust gas emissions , 2007 .

[16]  A. M. Efstathiou,et al.  Regeneration of thermally aged Pt-Rh/CexZr1−xO2-Al2O3 model three-way catalysts by oxychlorination treatments , 2006 .

[17]  J. Hangas,et al.  Comparative Analytical Study of Two Pt–Rh Three-way Catalysts , 2006 .

[18]  A. M. Efstathiou,et al.  Influence of oxychlorination treatments on the redox and oxygen storage and release properties of thermally aged Pd-Rh/CexZr1−xO2/Al2O3 model three-way catalysts , 2005 .

[19]  Robert Walter McCabe,et al.  Automotive exhaust catalysis , 2003 .

[20]  R. Farrauto,et al.  Automobile exhaust catalysts , 2001 .

[21]  O. Stéphan,et al.  Electron Microscopy (HREM, EELS) Study of the Reoxidation Conditions for Recovery of NM/CeO2 (NM: Rh, Pt) Catalysts from Decoration or Alloying Phenomena , 2001 .

[22]  Geng Zhang,et al.  Design of advanced automotive exhaust catalysts , 2000 .

[23]  Abhaya K. Datye,et al.  Catalyst microstructure and methane oxidation reactivity during the Pd↔PdO transformation on alumina supports , 2000 .

[24]  G. Djéga-Mariadassou,et al.  Thermal stability of (0.15–0.35 wt%) rhodium on low-loaded ceria-supported rhodium catalysts , 1998 .

[25]  G. Graham,et al.  Why Rhodium in Automotive Three-Way Catalysts? , 1994 .

[26]  K. Taylor Nitric oxide catalysis in automotive exhaust systems , 1993 .

[27]  D. W. Goodman,et al.  Comparative kinetic studies of CO$z.sbnd;O2 and CO$z.sbnd;NO reactions over single crystal and supported rhodium catalysts , 1986 .

[28]  Joyce E. Carpenter,et al.  The oxidation state and catalytic activity of supported rhodium , 1983 .

[29]  H. Shinjoh,et al.  Effect of Severe Thermal Aging on Noble Metal Catalysts , 1991 .

[30]  J. Dettling,et al.  Rhodium – Support Interactions in Automotive Exhaust Catalysts , 1987 .