RNA Secondary Structures

The three-dimensional structures of nucleic acids, RNA, and DNA, are dominated by double-helical regions that are formed by canonical Watson–Crick and wobble (GU) base pairs, which collectively are referred to as the secondary structure of the molecule. In the case of RNA, this level of description is of particular interest because it captures the thermodynamics of RNA folding quite well and allows a self-consistent description of folding dynamics. Furthermore, secondary structures are often evolutionarily well conserved, evolving much slower than the underlying sequences. From a bioinformatics perspective, RNAsecondary structures are a convenient representation because efficient exact algorithms are known to enumerate the structures that can be formed by a given sequence, to solve the folding problem, and to compute the partition function (and hence any thermodynamic quantity of interest) from a well-measured set of empirical energy parameters. Keywords: Base Pair; Dynamic Programming; Helix or Stem; Loops; Noncoding RNA; Pseudoknot; RNomics; Secondary Structure

[1]  Michael Brinkmeier,et al.  Structural Alignments of pseudo-knotted RNA-molecules in polynomial time , 2006, ArXiv.

[2]  Julien Allali,et al.  A new distance for high level RNA secondary structure comparison , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[3]  Peter F. Stadler,et al.  Memory Efficient Folding Algorithms for Circular RNA Secondary Structures , 2006, German Conference on Bioinformatics.

[4]  P. Stadler,et al.  Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome , 2005, Nature Biotechnology.

[5]  Stephen R Holbrook,et al.  RNA structure: the long and the short of it , 2005, Current Opinion in Structural Biology.

[6]  Gary D. Stormo,et al.  Pairwise local structural alignment of RNA sequences with sequence similarity less than 40% , 2005, Bioinform..

[7]  Peter Clote,et al.  An Efficient Algorithm to Compute the Landscape of Locally Optimal RNA Secondary Structures with Respect to the NussinovJacobson Energy Model , 2005, J. Comput. Biol..

[8]  Peter F Stadler,et al.  Fast and reliable prediction of noncoding RNAs , 2005, Proc. Natl. Acad. Sci. USA.

[9]  A. Condon,et al.  Secondary structure prediction of interacting RNA molecules. , 2005, Journal of molecular biology.

[10]  Andrew P. Gibson,et al.  A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. , 2005, Molecular biology and evolution.

[11]  P. Stadler,et al.  The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model. , 2005, Gene.

[12]  Peter F. Stadler,et al.  Non-coding RNAs in Ciona intestinalis , 2005, ECCB/JBI.

[13]  De-Pei Liu,et al.  The role of small RNAs in human diseases: Potential troublemaker and therapeutic tools , 2005, Medicinal research reviews.

[14]  Rosena R. X. Du,et al.  Reduction of m-regular noncrossing partitions , 2004, Eur. J. Comb..

[15]  Guo Ying An enumeration of RNA secondary structure , 2005 .

[16]  A. Adai,et al.  Computational prediction of miRNAs in Arabidopsis thaliana. , 2005, Genome research.

[17]  Ian Holmes,et al.  Stem Stem Stem Stem Loop Loop Loop LoopLoop Loop Loop Loop Loop Loop Loop , 2005 .

[18]  Gunnar W. Klau,et al.  Structural Alignment of Two RNA Sequences with Lagrangian Relaxation , 2004, ISAAC.

[19]  Filomena Anna Digilio,et al.  A computational search for box C/D snoRNA genes in the Drosophila melanogaster genome , 2004, Bioinform..

[20]  Yves Van de Peer,et al.  Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences , 2004, Bioinform..

[21]  Ian Holmes,et al.  A probabilistic model for the evolution of RNA structure , 2004, BMC Bioinformatics.

[22]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[23]  Irmtraud M. Meyer,et al.  An evolutionary model for protein-coding regions with conserved RNA structure. , 2004, Molecular biology and evolution.

[24]  Robert Giegerich,et al.  A comprehensive comparison of comparative RNA structure prediction approaches , 2004, BMC Bioinformatics.

[25]  Peter F. Stadler,et al.  Alignment of RNA base pairing probability matrices , 2004, Bioinform..

[26]  I. Hofacker,et al.  Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. , 2004, Journal of molecular biology.

[27]  Terry Gaasterland,et al.  Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets , 2004, Genome Biology.

[28]  Christian W. Cobaugh,et al.  Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction , 2004, BMC Bioinformatics.

[29]  Robert Giegerich,et al.  Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics , 2004, BMC Bioinformatics.

[30]  D. Mathews Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. , 2004, RNA.

[31]  M. Zuker,et al.  Prediction of hybridization and melting for double-stranded nucleic acids. , 2004, Biophysical journal.

[32]  Robert Giegerich,et al.  Evaluating the predictability of conformational switching in RNA , 2004, Bioinform..

[33]  Ye Ding,et al.  Sfold web server for statistical folding and rational design of nucleic acids , 2004, Nucleic Acids Res..

[34]  Anne Condon,et al.  Classifying RNA pseudoknotted structures , 2004, Theor. Comput. Sci..

[35]  Peter F. Stadler,et al.  The Partition Function Variant of Sankoff's Algorithm , 2004, International Conference on Computational Science.

[36]  Sean R. Eddy,et al.  Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction , 2004, BMC Bioinformatics.

[37]  D. Turner,et al.  Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  P. Stadler,et al.  Conserved RNA secondary structures in Flaviviridae genomes. , 2004, The Journal of general virology.

[39]  Michael T. Wolfinger,et al.  Efficient computation of RNA folding dynamics , 2004 .

[40]  Peter F. Stadler,et al.  Prediction of consensus RNA secondary structures including pseudoknots , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[41]  Anne Condon,et al.  A new algorithm for RNA secondary structure design. , 2004, Journal of molecular biology.

[42]  Peter F. Stadler,et al.  Prediction of locally stable RNA secondary structures for genome-wide surveys , 2004, Bioinform..

[43]  Peter F. Stadler,et al.  Barrier Trees on Poset-Valued Landscapes , 2003, Genetic Programming and Evolvable Machines.

[44]  P. Schuster,et al.  Statistics of RNA melting kinetics , 2004, European Biophysics Journal.

[45]  P. Stadler,et al.  Computational Chemistry with RNA Secondary Structures , 2004 .

[46]  Irmtraud M. Meyer,et al.  A comparative method for finding and folding RNA secondary structures within protein-coding regions. , 2004, Nucleic acids research.

[47]  M. Gelfand,et al.  Riboswitches: the oldest mechanism for the regulation of gene expression? , 2004, Trends in genetics : TIG.

[48]  Robert Giegerich,et al.  Abstract shapes of RNA. , 2004, Nucleic acids research.

[49]  Peter F. Stadler,et al.  Conserved RNA secondary structures in viral genomes: A survey , 2004, German Conference on Bioinformatics.

[50]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[51]  C. Lawrence,et al.  A statistical sampling algorithm for RNA secondary structure prediction. , 2003, Nucleic acids research.

[52]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[53]  Niles A. Pierce,et al.  A partition function algorithm for nucleic acid secondary structure including pseudoknots , 2003, J. Comput. Chem..

[54]  Sean R. Eddy,et al.  RSEARCH: Finding homologs of single structured RNA sequences , 2003, BMC Bioinformatics.

[55]  Laurent Tichit,et al.  RNA secondary structure comparison: exact analysis of the Zhang-Shasha tree edit algorithm , 2003, Theor. Comput. Sci..

[56]  Weixiong Zhang,et al.  An iterative loop matching approach to the prediction of RNA secondary structures with pseudoknots , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[57]  Robert Giegerich,et al.  Local similarity in RNA secondary structures , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[58]  S. Eddy,et al.  Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics. , 2003, Nucleic acids research.

[59]  Russell L. Malmberg,et al.  Stochastic modeling of RNA pseudoknotted structures: a grammatical approach , 2003, ISMB.

[60]  Yanga Byun,et al.  PSEUDOVIEWER2: visualization of RNA pseudoknots of any type , 2003, Nucleic Acids Res..

[61]  Bjarne Knudsen,et al.  Pfold: RNA Secondary Structure Prediction Using Stochastic Context-Free Grammars , 2003 .

[62]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[63]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[64]  J. Otsuka,et al.  Advanced formulation of base pair changes in the stem regions of ribosomal RNAs; its application to mitochondrial rRNAs for resolving the phylogeny of animals. , 2003, Journal of theoretical biology.

[65]  G. Church,et al.  Computational and experimental identification of C. elegans microRNAs. , 2003, Molecular cell.

[66]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[67]  Rolf Backofen,et al.  MARNA: A server for multiple alignment of RNAs , 2003, German Conference on Bioinformatics.

[68]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[69]  Peter F. Stadler,et al.  Exact Folding Dynamics of RNA Secondary Structures , 2003 .

[70]  Peter F. Stadler,et al.  Design of multi-stable nucleid acid sequences , 2003, German Conference on Bioinformatics.

[71]  V. W. Porto,et al.  Discovery of RNA structural elements using evolutionary computation. , 2002, Nucleic acids research.

[72]  Emeric Deutsch,et al.  A bijection between ordered trees and 2-Motzkin paths and its many consequences , 2002, Discret. Math..

[73]  Pavel Hobza,et al.  Toward true DNA base-stacking energies: MP2, CCSD(T), and complete basis set calculations. , 2002, Journal of the American Chemical Society.

[74]  S. Andersson,et al.  BRUCE: a program for the detection of transfer-messenger RNA genes in nucleotide sequences. , 2002, Nucleic acids research.

[75]  Sean R. Eddy,et al.  A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure , 2002, BMC Bioinformatics.

[76]  P. Stadler,et al.  Secondary structure prediction for aligned RNA sequences. , 2002, Journal of molecular biology.

[77]  G. Caetano-Anollés Tracing the evolution of RNA structure in ribosomes. , 2002, Nucleic acids research.

[78]  A. Hüttenhofer,et al.  Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[79]  S. Eddy,et al.  Noncoding RNA genes identified in AT-rich hyperthermophiles , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[80]  P. Schattner Searching for RNA genes using base-composition statistics. , 2002, Nucleic acids research.

[81]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[82]  S. Eddy Computational Genomics of Noncoding RNA Genes , 2002, Cell.

[83]  D. Turner,et al.  Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. , 2002, Journal of molecular biology.

[84]  R. Griffey,et al.  A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. , 2002, Bio Systems.

[85]  Michael T. Wolfinger,et al.  Barrier Trees of Degenerate Landscapes , 2002 .

[86]  Ian Holmes,et al.  Pairwise RNA Structure Comparison with Stochastic Context-Free Grammars , 2001, Pacific Symposium on Biocomputing.

[87]  Chris M. Brown,et al.  Transterm: a database of mRNAs and translational control elements , 2002, Nucleic Acids Res..

[88]  Dustin Boswell,et al.  Introduction to Support Vector Machines , 2002 .

[89]  Kyungsook Han,et al.  Prediction of RNA Pseudoknots-Comparative Study of Genetic Algorithms , 2002 .

[90]  Gustavo Caetano-Anollés,et al.  Evolved RNA Secondary Structure and the Rooting of the Universal Tree of Life , 2002, Journal of Molecular Evolution.

[91]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[92]  P. Stadler,et al.  Conserved RNA secondary structures in Picornaviridae genomes. , 2001, Nucleic acids research.

[93]  S. Eddy Non–coding RNA genes and the modern RNA world , 2001, Nature Reviews Genetics.

[94]  D. Ecker,et al.  RNAMotif, an RNA secondary structure definition and search algorithm. , 2001, Nucleic acids research.

[95]  Gabriel Valiente,et al.  An efficient bottom-up distance between trees , 2001, Proceedings Eighth Symposium on String Processing and Information Retrieval.

[96]  D. Gautheret,et al.  Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. , 2001, Journal of molecular biology.

[97]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[98]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[99]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[100]  Elena Rivas,et al.  Noncoding RNA gene detection using comparative sequence analysis , 2001, BMC Bioinformatics.

[101]  P. Sonneveld,et al.  Multiple Human Vault RNAs , 2001, The Journal of Biological Chemistry.

[102]  C. Gissi,et al.  Structural and functional features of eukaryotic mRNA untranslated regions. , 2001, Gene.

[103]  I-Min A. Dubchak,et al.  A computational approach to identify genes for functional RNAs in genomic sequences. , 2001, Nucleic acids research.

[104]  S. Eddy,et al.  Computational identification of noncoding RNAs in E. coli by comparative genomics , 2001, Current Biology.

[105]  N. Hernandez,et al.  Small Nuclear RNA Genes: a Model System to Study Fundamental Mechanisms of Transcription* , 2001, The Journal of Biological Chemistry.

[106]  G. Storz,et al.  Identification of novel small RNAs using comparative genomics and microarrays. , 2001, Genes & development.

[107]  Andrzej Lingas,et al.  A Fast Algorithm for Optimal Alignment between Similar Ordered Trees , 2001, CPM.

[108]  H. Margalit,et al.  Novel small RNA-encoding genes in the intergenic regions of Escherichia coli , 2001, Current Biology.

[109]  A. Hüttenhofer,et al.  RNomics: an experimental approach that identifies 201 candidates for novel, small, non‐messenger RNAs in mouse , 2001, The EMBO journal.

[110]  G. Stormo,et al.  Discovering common stem-loop motifs in unaligned RNA sequences. , 2001, Nucleic acids research.

[111]  K. Peterson,et al.  Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences , 2001, Evolution & development.

[112]  J. Harris,et al.  New insight into RNase P RNA structure from comparative analysis of the archaeal RNA. , 2001, RNA.

[113]  P. Stadler,et al.  Design of multistable RNA molecules. , 2001, RNA.

[114]  M. Crespi,et al.  Translational and Structural Requirements of the Early Nodulin Gene enod40, a Short-Open Reading Frame-Containing RNA, for Elicitation of a Cell-Specific Growth Response in the Alfalfa Root Cortex , 2001, Molecular and Cellular Biology.

[115]  B L Maidak,et al.  The RDP-II (Ribosomal Database Project) , 2001, Nucleic Acids Res..

[116]  Robert Giegerich,et al.  Reducing the Conformation Space in RNA Structure Prediction , 2001, German Conference on Bioinformatics.

[117]  P. Avner,et al.  X-chromosome inactivation: counting, choice and initiation , 2001, Nature Reviews Genetics.

[118]  D. Thirumalai,et al.  Early events in RNA folding. , 2001, Annual review of physical chemistry.

[119]  Dirk Strothmann,et al.  HyPaLib: a database of RNAs and RNA structural elements defined by hybrid patterns , 2001, Nucleic Acids Res..

[120]  Yves Van de Peer,et al.  The European Large Subunit Ribosomal RNA database , 2000, Nucleic Acids Res..

[121]  Vincent Moulton,et al.  Use of RNA Secondary Structure for Studying the Evolution of RNase P and RNase MRP , 2000, Journal of Molecular Evolution.

[122]  Andrés Marzal,et al.  Computation of the N Best Parse Trees for Weighted and Stochastic Context-Free Grammars , 2000, SSPR/SPR.

[123]  Tatsuya Akutsu,et al.  Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots , 2000, Discret. Appl. Math..

[124]  Robert Giegerich,et al.  A systematic approach to dynamic programming in bioinformatics , 2000, Bioinform..

[125]  P. Higgs RNA secondary structure: physical and computational aspects , 2000, Quarterly Reviews of Biophysics.

[126]  D. Bartel,et al.  One sequence, two ribozymes: implications for the emergence of new ribozyme folds. , 2000, Science.

[127]  Elena Rivas,et al.  Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs , 2000, Bioinform..

[128]  E. Siggia,et al.  Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[129]  M. Zuker Calculating nucleic acid secondary structure. , 2000, Current opinion in structural biology.

[130]  B. S. Baker,et al.  Dosage compensation rox! , 2000, Current opinion in cell biology.

[131]  Graziano Pesole,et al.  PatSearch: a pattern matcher software that finds functional elements in nucleotide and protein sequences and assesses their statistical significance , 2000, Bioinform..

[132]  P. Stadler,et al.  Design of Multi-Stable RNA Molecules , 2000 .

[133]  S. Eddy,et al.  Homologs of small nucleolar RNAs in Archaea. , 2000, Science.

[134]  P. Schuster,et al.  RNA folding at elementary step resolution. , 1999, RNA.

[135]  Yves Van de Peer,et al.  The European Small Subunit Ribosomal RNA database , 2000, Nucleic Acids Res..

[136]  Miroslawa Z. Barciszewska,et al.  5S ribosomal RNA database Y2K , 2000, Nucleic Acids Res..

[137]  Christian N. S. Pedersen,et al.  RNA Pseudoknot Prediction in Energy-Based Models , 2000, J. Comput. Biol..

[138]  Michael Schöniger,et al.  Toward Assigning Helical Regions in Alignments of Ribosomal RNA and Testing the Appropriateness of Evolutionary Models , 1999, Journal of Molecular Evolution.

[139]  R. Lück,et al.  ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. , 1999, Nucleic acids research.

[140]  V. Juan,et al.  RNA secondary structure prediction based on free energy and phylogenetic analysis. , 1999, Journal of molecular biology.

[141]  Christian N. S. Pedersen,et al.  Fast evaluation of internal loops in RNA secondary structure prediction , 1999, Bioinform..

[142]  Bjarne Knudsen,et al.  RNA secondary structure prediction using stochastic context-free grammars and evolutionary history , 1999, Bioinform..

[143]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[144]  C. Pleij,et al.  An approximation of loop free energy values of RNA H-pseudoknots. , 1999, RNA.

[145]  D Repsilber,et al.  Formation of metastable RNA structures by sequential folding during transcription: time-resolved structural analysis of potato spindle tuber viroid (-)-stranded RNA by temperature-gradient gel electrophoresis. , 1999, RNA.

[146]  H. J. Kim,et al.  A vector-based method for drawing RNA secondary structure , 1999, Bioinform..

[147]  Peter F. Stadler,et al.  RNA In Silico The Computational Biology of RNA Secondary Structures , 1999, Adv. Complex Syst..

[148]  G. Pruijn,et al.  Conserved features of Y RNAs revealed by automated phylogenetic secondary structure analysis. , 1999, Nucleic acids research.

[149]  P. Schuster,et al.  Complete suboptimal folding of RNA and the stability of secondary structures. , 1999, Biopolymers.

[150]  M. Ohno,et al.  Meiosis: MeiRNA hits the spot , 1999, Current Biology.

[151]  E Rivas,et al.  A dynamic programming algorithm for RNA structure prediction including pseudoknots. , 1998, Journal of molecular biology.

[152]  Peter F. Stadler,et al.  Automatic Detection of Conserved Base Pairing Patterns in RNA Virus Genomes , 1998, Comput. Chem..

[153]  James W. Brown,et al.  The Ribonuclease P Database , 1994, Nucleic Acids Res..

[154]  C. Zwieb,et al.  Comparative sequence analysis of tmRNA. , 1999, Nucleic acids research.

[155]  Maciej Szymanski,et al.  Collection of mRNA-like non-coding RNAs , 1999, Nucleic Acids Res..

[156]  Dmitry A. Samarsky,et al.  A comprehensive database for the small nucleolar RNAs from Saccharomyces cerevisiae , 1999, Nucleic Acids Res..

[157]  Peter F. Stadler,et al.  Combinatorics of RNA Secondary Structures , 1998, Discret. Appl. Math..

[158]  L. Créancier,et al.  Two Independent Internal Ribosome Entry Sites Are Involved in Translation Initiation of Vascular Endothelial Growth Factor mRNA , 1998, Molecular and Cellular Biology.

[159]  D. Turner,et al.  Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. , 1998, Biochemistry.

[160]  R. Singer,et al.  RNA localization: different zipcodes, same postman? , 1998, Trends in cell biology.

[161]  D Thirumalai,et al.  Native secondary structure formation in RNA may be a slave to tertiary folding. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[162]  Philip N. Klein,et al.  Computing the Edit-Distance between Unrooted Ordered Trees , 1998, ESA.

[163]  M. Huynen,et al.  Automatic detection of conserved RNA structure elements in complete RNA virus genomes. , 1998, Nucleic acids research.

[164]  M. Zuker,et al.  Using reliability information to annotate RNA secondary structures. , 1998, RNA.

[165]  Martin Vingron,et al.  A polyhedral approach to RNA sequence structure alignment , 1998, RECOMB '98.

[166]  Peter F. Stadler,et al.  Minimal Cycle Bases of Outerplanar Graphs , 1998, Electron. J. Comb..

[167]  Gary D. Stormo,et al.  An RNA folding method capable of identifying pseudoknots and base triples , 1998, Bioinform..

[168]  Laurie J. Heyer,et al.  Finding the most significant common sequence and structure motifs in a set of RNA sequences. , 1997, Nucleic acids research.

[169]  E. Kool Preorganization of DNA: Design Principles for Improving Nucleic Acid Recognition by Synthetic Oligonucleotides. , 1997, Chemical reviews.

[170]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[171]  P. Schuster,et al.  Generic properties of combinatory maps: neutral networks of RNA secondary structures. , 1997, Bulletin of mathematical biology.

[172]  R De Wachter,et al.  RnaViz, a program for the visualisation of RNA secondary structure. , 1997, Nucleic acids research.

[173]  E Westhof,et al.  Calculations of nucleic acid conformations. , 1996, Current opinion in structural biology.

[174]  R. Lück,et al.  Thermodynamic prediction of conserved secondary structure: application to the RRE element of HIV, the tRNA-like element of CMV and the mRNA of prion protein. , 1996, Journal of molecular biology.

[175]  James W. Brown,et al.  Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[176]  P. Schuster,et al.  Algorithm independent properties of RNA secondary structure predictions , 1996, European Biophysics Journal.

[177]  Christian Zwieb,et al.  The uRNA database , 1996, Nucleic Acids Res..

[178]  Alan S. Perelson,et al.  Base Pairing Probabilities in a Complete HIV-1 RNA , 1996, J. Comput. Biol..

[179]  P. Frantsuzov,et al.  Statistical description of nucleic acid secondary structure folding. , 1995, Journal of biomolecular structure & dynamics.

[180]  C. Pleij,et al.  The computer simulation of RNA folding pathways using a genetic algorithm. , 1995, Journal of molecular biology.

[181]  P. Higgs Thermodynamic properties of transfer RNA: a computational study , 1995 .

[182]  A. E. Walter,et al.  Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[183]  Tao Jiang,et al.  Alignment of Trees - An Alternative to Tree Edit , 1994, Theor. Comput. Sci..

[184]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[185]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[186]  C. Gaspin,et al.  Automatic display of RNA secondary structures , 1993, Comput. Appl. Biosci..

[187]  P. Schuster,et al.  Statistics of RNA secondary structures , 1993, Biopolymers.

[188]  Kyungsook Han,et al.  Prediction of common folding structures of homologous RNAs. , 1993, Nucleic acids research.

[189]  G. Stormo,et al.  Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. , 1992, Nucleic acids research.

[190]  J. Maizel,et al.  Extensive sequence-specific information throughout the CAR/RRE, the target sequence of the human immunodeficiency virus type 1 Rev protein , 1992, Journal of virology.

[191]  David K. Y. Chiu,et al.  Inferring consensus structure from nucleic acid sequences , 1991, Comput. Appl. Biosci..

[192]  A. Gultyaev,et al.  The computer simulation of RNA folding involving pseudoknot formation. , 1991, Nucleic acids research.

[193]  M. Zuker,et al.  Predicting common foldings of homologous RNAs. , 1991, Journal of biomolecular structure & dynamics.

[194]  E. Brody,et al.  Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. , 1990 .

[195]  Kaizhong Zhang,et al.  Fast Algorithms for the Unit Cost Editing Distance Between Trees , 1990, J. Algorithms.

[196]  Daniel Gautheret,et al.  Pattern searching/alignment with RNA primary and secondary structures: an effective descriptor for tRNA , 1990, Comput. Appl. Biosci..

[197]  Kaizhong Zhang,et al.  Comparing multiple RNA secondary structures using tree comparisons , 1990, Comput. Appl. Biosci..

[198]  J. Abrahams,et al.  Prediction of RNA secondary structure, including pseudoknotting, by computer simulation. , 1990, Nucleic acids research.

[199]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[200]  C R Woese,et al.  Higher order structural elements in ribosomal RNAs: pseudo-knots and the use of noncanonical pairs. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[201]  Kaizhong Zhang,et al.  Simple Fast Algorithms for the Editing Distance Between Trees and Related Problems , 1989, SIAM J. Comput..

[202]  M. Zuker On finding all suboptimal foldings of an RNA molecule. , 1989, Science.

[203]  Bruce A. Shapiro,et al.  An algorithm for comparing multiple RNA secondary structures , 1988, Comput. Appl. Biosci..

[204]  Jih-Hsiang Chen,et al.  A program for predicting significant RNA secondary structures , 1988, Comput. Appl. Biosci..

[205]  D. Sankoff Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems , 1985 .

[206]  A A Mironov,et al.  A kinetic approach to the prediction of RNA secondary structures. , 1985, Journal of biomolecular structure & dynamics.

[207]  G. Steger,et al.  Conformational transitions in viroids and virusoids: comparison of results from energy minimization algorithm and from experimental data. , 1984, Journal of biomolecular structure & dynamics.

[208]  H. M. Martinez,et al.  An RNA folding rule , 1984, Nucleic Acids Res..

[209]  Bruce A. Shapiro,et al.  Generating non-overlapping displays of nucleic acid secondary structure , 1984, Nucleic Acids Res..

[210]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[211]  Kuo-Chung Tai,et al.  The Tree-to-Tree Correction Problem , 1979, JACM.

[212]  Michael S. Waterman,et al.  Combinatorics of RNA Hairpins and Cloverleaves , 1979 .

[213]  M. Waterman,et al.  RNA secondary structure: a complete mathematical analysis , 1978 .

[214]  R. Ornstein,et al.  An optimized potential function for the calculation of nucleic acid interaction energies I. Base stacking , 1978, Biopolymers.

[215]  Jerrold R. Griggs,et al.  Algorithms for Loop Matchings , 1978 .

[216]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[217]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[218]  Daniel H. Younger,et al.  Recognition and Parsing of Context-Free Languages in Time n^3 , 1967, Inf. Control..