A consistent combination of GNSS and SLR with minimum constraints

In this article, the realization of a global terrestrial reference system (TRS) based on a consistent combination of Global Navigation Satellite System (GNSS) and Satellite Laser Ranging (SLR) is studied. Our input data consists of normal equation systems from 17 years (1994–2010) of homogeneously reprocessed GPS, GLONASS and SLR data. This effort used common state of the art reduction models and the same processing software (Bernese GNSS Software) to ensure the highest consistency when combining GNSS and SLR. Residual surface load deformations are modeled with a spherical harmonic approach. The estimated degree-1 surface load coefficients have a strong annual signal for which the GNSS- and SLR-only solutions show very similar results. A combination including these coefficients reduces systematic uncertainties in comparison to the single-technique solution. In particular, uncertainties due to solar radiation pressure modeling in the coefficient time series can be reduced up to 50 % in the GNSS+SLR solution compared to the GNSS-only solution. In contrast to the ITRF2008 realization, no local ties are used to combine the different geodetic techniques. We combine the pole coordinates as global ties and apply minimum constraints to define the geodetic datum. We show that a common origin, scale and orientation can be reliably realized from our combination strategy in comparison to the ITRF2008.

[1]  C. Bizouard,et al.  The Combined Solution C04 for Earth Orientation Parameters Consistent with International Terrestrial Reference Frame 2005 , 2009 .

[2]  Luca Ostini,et al.  Analysis and Quality Assessment of GNSS-Derived Parameter Time Series , 2012 .

[3]  Zuheir Altamimi,et al.  ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications , 2002 .

[4]  Yehuda Bock,et al.  Error analysis of continuous GPS position time series , 2004 .

[5]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[6]  Yehuda Bock,et al.  Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities , 1997 .

[7]  Richard S. Gross,et al.  A Kalman-filter-based approach to combining independent Earth-orientation series , 1998 .

[8]  Peter Steigenberger,et al.  Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas , 2007 .

[9]  R. Dach,et al.  Geocenter coordinates estimated from GNSS data as viewed by perturbation theory , 2013 .

[10]  Jens Schröter,et al.  Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data , 2012 .

[11]  J. Houghton,et al.  Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[12]  T. van Dam,et al.  Displacements of the Earth's surface due to atmospheric loading: Effects on gravity and baseline measurements , 1987 .

[13]  R. Dach,et al.  Geocenter Coordinates from GNSS and Combined GNSS-SLR Solutions Using Satellite Co-locations , 2014 .

[14]  G. Blewitt Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth , 2003 .

[15]  Elmar Brockmann,et al.  Combination of solutions for geodetic and geodynamic applications of the Global Positioning System (GPS). , 1997 .

[16]  Xavier Collilieux,et al.  IGS08: the IGS realization of ITRF2008 , 2012, GPS Solutions.

[17]  A.-M. Gontier,et al.  Toward a direct combination of space‐geodetic techniques at the measurement level: Methodology and main issues , 2007 .

[18]  Claude Boucher,et al.  A review of algebraic constraints in terrestrial reference frame datum definition , 2001 .

[19]  Michael B. Heflin,et al.  Seasonal and interannual global surface mass variations from multisatellite geodetic data , 2006 .

[20]  Peter Steigenberger,et al.  Homogeneous reprocessing of GPS, GLONASS and SLR observations , 2014, Journal of Geodesy.

[21]  M. Rothacher,et al.  The Global Geodetic Observing System , 2007 .

[22]  P. Döll,et al.  A global hydrological model for deriving water availability indicators: model tuning and validation , 2003 .

[23]  Adrian Jäggi,et al.  Validation of GNSS-SLR local ties by using space ties , 2013 .

[24]  M. Rothacher,et al.  Low-degree earth deformation from reprocessed GPS observations , 2010 .

[25]  Leonid Petrov,et al.  Study of the atmospheric pressure loading signal in very long baseline interferometry observations , 2003, physics/0311096.

[26]  G. Blewitt,et al.  A New Global Mode of Earth Deformation: Seasonal Cycle Detected , 2001, Science.

[27]  Manuela Seitz,et al.  The 2008 DGFI realization of the ITRS: DTRF2008 , 2012, Journal of Geodesy.

[28]  Markus Rothacher,et al.  Understanding a dynamic planet: Earth science requirements for geodesy , 2009 .

[29]  H. Plag,et al.  Global geodetic observing system : meeting the requirements of a global society on a changing planet in 2020 , 2009 .

[30]  Krzysztof Sośnica,et al.  Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results , 2013, Journal of Geodesy.

[31]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[32]  J. Pel,et al.  The High Road to Astronomical Photometric Precision: Differential Photometry , 2011 .

[33]  S. Williams The effect of coloured noise on the uncertainties of rates estimated from geodetic time series , 2003 .

[34]  Geoffrey Blewitt,et al.  Crustal displacements due to continental water loading , 2001 .

[35]  Peter Steigenberger,et al.  Reprocessing of a global GPS network , 2006 .

[36]  Z. Altamimi,et al.  ITRF2005 : A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters , 2007 .

[37]  Thomas Hobiger,et al.  Combination of GPS and VLBI on the observation level during CONT11—common parameters, ties and inter-technique biases , 2014, Journal of Geodesy.

[38]  U. Hugentobler,et al.  Reducing the draconitic errors in GNSS geodetic products , 2014, Journal of Geodesy.

[39]  Peter J. Clarke,et al.  Geocenter motions from GPS: A unified observation model , 2006 .

[40]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[41]  Markus Rothacher Towards a rigorous combination of space geodetic techniques , 2003 .

[42]  Xavier Collilieux,et al.  Global sea-level rise and its relation to the terrestrial reference frame , 2009 .

[43]  J. Ray,et al.  Anomalous harmonics in the spectra of GPS position estimates , 2008 .

[44]  Manuela Seitz Kombination geodätischer Raumbeobachtungsverfahren zur Realisierung eines terrestrischen Referenzsystems , 2009 .

[45]  Peter Steigenberger,et al.  Realization of the Terrestrial Reference System by a reprocessed global GPS network , 2008 .

[46]  Christoforos Kotsakis,et al.  Reference frame stability and nonlinear distortion in minimum-constrained network adjustment , 2012, Journal of Geodesy.

[47]  M. Meindl,et al.  FODITS: A New Tool of the Bernese GPS Software to analyze Time Series , 2009 .

[48]  Michael R Pearlman,et al.  THE INTERNATIONAL LASER RANGING SERVICE , 2007 .

[49]  C. Boucher,et al.  ITRF 92 and its associated velocity field. , 1992 .

[50]  U. Hugentobler,et al.  Impact of Earth radiation pressure on GPS position estimates , 2012, Journal of Geodesy.

[51]  Manuela Seitz,et al.  Combination of GNSS and SLR observations using satellite co-locations , 2011 .

[52]  Markus Rothacher,et al.  Combined Earth orientation parameters based on homogeneous and continuous VLBI and GPS data , 2007 .

[53]  F. H. Webb,et al.  Ocean loading tides in GPS and rapid variations of the frame origin , 2000 .

[54]  L. Mervart,et al.  Bernese GPS Software Version 5.0 , 2007 .

[55]  Daniela Thaller Inter-technique combination based on homogeneous normal equation systems including station coordinates, earth orientation and troposphere parameters , 2008 .

[56]  Jean Kovalevsky,et al.  Reference frames in astronomy and geophysics , 1989 .

[57]  W. Gurtner,et al.  The International Laser Ranging Service and Its Support for GGOS , 2005 .