Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference

MOTIVATION Bayesian estimation of phylogeny is based on the posterior probability distribution of trees. Currently, the only numerical method that can effectively approximate posterior probabilities of trees is Markov chain Monte Carlo (MCMC). Standard implementations of MCMC can be prone to entrapment in local optima. Metropolis coupled MCMC [(MC)(3)], a variant of MCMC, allows multiple peaks in the landscape of trees to be more readily explored, but at the cost of increased execution time. RESULTS This paper presents a parallel algorithm for (MC)(3). The proposed parallel algorithm retains the ability to explore multiple peaks in the posterior distribution of trees while maintaining a fast execution time. The algorithm has been implemented using two popular parallel programming models: message passing and shared memory. Performance results indicate nearly linear speed improvement in both programming models for small and large data sets.

[1]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[2]  M. Newton,et al.  Phylogenetic Inference for Binary Data on Dendograms Using Markov Chain Monte Carlo , 1997 .

[3]  Hani Doss,et al.  Phylogenetic Tree Construction Using Markov Chain Monte Carlo , 2000 .

[4]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[5]  John P. Huelsenbeck,et al.  Phylogeny, Genome Evolution, and Host Specificity of Single-Stranded RNA Bacteriophage (Family Leviviridae) , 2001, Journal of Molecular Evolution.

[6]  Ziheng Yang Estimating the pattern of nucleotide substitution , 1994, Journal of Molecular Evolution.

[7]  B. Rannala,et al.  Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.

[8]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[9]  B. Rannala,et al.  Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference , 1996, Journal of Molecular Evolution.

[10]  M A Newton,et al.  Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods , 1999, Biometrics.

[11]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[12]  M J Sanderson,et al.  Improved bootstrap confidence limits in large-scale phylogenies, with an example from Neo-Astragalus (Leguminosae). , 2000, Systematic biology.

[13]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[14]  D. Pearl,et al.  Stochastic search strategy for estimation of maximum likelihood phylogenetic trees. , 2001, Systematic biology.

[15]  Jonathan P. Bollback,et al.  Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology , 2001, Science.

[16]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[17]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[18]  D. Maddison,et al.  NEXUS: an extensible file format for systematic information. , 1997, Systematic biology.

[19]  Message Passing Interface Forum MPI: A message - passing interface standard , 1994 .

[20]  Srinivasan Parthasarathy,et al.  Cashmere-2L: software coherent shared memory on a clustered remote-write network , 1997, SOSP.

[21]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[22]  Walter R. Gilks,et al.  Strategies for improving MCMC , 1995 .

[23]  SkjellumAnthony,et al.  A high-performance, portable implementation of the MPI message passing interface standard , 1996 .

[24]  B. Larget,et al.  Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees , 2000 .

[25]  D. Maddison The discovery and importance of multiple islands of most , 1991 .

[26]  Bob Mau,et al.  Markov chain Monte Carlo for the Bayesian analysis of evolutionary trees from aligned molecular sequences , 1999 .

[27]  Richard B. Gillett Memory Channel Network for PCI , 1996, IEEE Micro.