Design principles for electrolytes and interfaces for stable lithium-metal batteries

[1]  L. Archer,et al.  The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation , 2016, Science Advances.

[2]  L. Archer,et al.  Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions , 2016, Science Advances.

[3]  Xin-Bing Cheng,et al.  Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries , 2016, Advanced materials.

[4]  Yayuan Liu,et al.  Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode , 2016, Nature Communications.

[5]  S. Choudhury,et al.  Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities , 2016 .

[6]  Hyun-Wook Lee,et al.  High-capacity battery cathode prelithiation to offset initial lithium loss , 2016, Nature Energy.

[7]  Lynden A. Archer,et al.  A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles , 2015, Nature Communications.

[8]  Yi Cui,et al.  A Highly Reversible Room-Temperature Sodium Metal Anode , 2015, ACS central science.

[9]  Zhengyuan Tu,et al.  Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. , 2015, Accounts of chemical research.

[10]  Hongkyung Lee,et al.  Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes , 2015, Scientific Reports.

[11]  Xin-bo Zhang,et al.  Artificial Protection Film on Lithium Metal Anode toward Long‐Cycle‐Life Lithium–Oxygen Batteries , 2015, Advanced materials.

[12]  Xiaogang Han,et al.  Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. , 2015, ACS nano.

[13]  Kenville E. Hendrickson,et al.  Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes , 2015 .

[14]  Deniz Gunceler,et al.  Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression , 2015, 1504.05799.

[15]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[16]  N. Kotov,et al.  A dendrite-suppressing composite ion conductor from aramid nanofibres , 2015, Nature Communications.

[17]  K. Geng,et al.  Prospects for Dendrite-Free Cycling of Li Metal Batteries , 2015 .

[18]  T. Bunning,et al.  Polymer electrolyte membranes with exceptional conductivity anisotropy via holographic polymerization , 2014 .

[19]  Jiulin Wang,et al.  Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility , 2014 .

[20]  Héctor D. Abruña,et al.  A rechargeable Na–CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes , 2014 .

[21]  Martin Z. Bazant,et al.  Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores , 2014, Scientific Reports.

[22]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[23]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[24]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[25]  Zhengyuan Tu,et al.  Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. , 2014, Angewandte Chemie.

[26]  Zhengyuan Tu,et al.  Nanoporous Polymer‐Ceramic Composite Electrolytes for Lithium Metal Batteries , 2014 .

[27]  L. Archer,et al.  Stability Analysis of Electrodeposition across a Structured Electrolyte with Immobilized Anions , 2014 .

[28]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[29]  Klaus Zick,et al.  Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.

[30]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[31]  L. Archer,et al.  High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites , 2013 .

[32]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[33]  P. Kohl,et al.  Nucleation of Electrodeposited Lithium Metal: Dendritic Growth and the Effect of Co-Deposited Sodium , 2013 .

[34]  Robert O. Ritchie,et al.  Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries , 2013 .

[35]  Bruce Dunn,et al.  In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. , 2012, ACS nano.

[36]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[37]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[38]  E. Chassaing,et al.  Calculation of the space charge in electrodeposition from a binary electrolyte , 2006 .

[39]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[40]  F. Ross,et al.  Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface , 2003, Nature materials.

[41]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[42]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[43]  N. Dudney,et al.  “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode , 2000 .

[44]  Rosso,et al.  Coupling of drift, diffusion, and electroconvection, in the vicinity of growing electrodeposits. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  J. D. Robertson,et al.  Electrical properties of amorphous lithium electrolyte thin films , 1992 .

[46]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .

[47]  F. M. Gray,et al.  Synthesis and characterization of ABA block copolymer-based polymer electrolytes , 1987 .

[48]  Dougherty,et al.  Dendritic and fractal patterns in electrolytic metal deposits. , 1986, Physical review letters.

[49]  S. Skaarup,et al.  Ionic conductivity of pure and doped Li3N , 1983 .

[50]  R. Aogaki,et al.  Theory of powdered metal formation in electrochemistry—morphological instability in galvanostatic crystal growth under diffusion control , 1981 .

[51]  L. C. Jonghe,et al.  SOME GEOMETRICAL ASPECTS OF BREAKDOWN OF SODIUM BETA ALUMINA , 1979 .

[52]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.