Impact ionization by hot carriers in a black phosphorus field effect transistor

[1]  R. Lake,et al.  Hot carrier-enhanced interlayer electron-hole pair multiplication in 2D semiconductor heterostructure photocells. , 2017, Nature nanotechnology.

[2]  Joonki Suh,et al.  Variable range hopping electric and thermoelectric transport in anisotropic black phosphorus , 2017 .

[3]  V. Perebeinos,et al.  Thermal Light Emission from Monolayer MoS2 , 2017, Advanced materials.

[4]  V. Perebeinos,et al.  Phonon-limited carrier mobility in monolayer black phosphorus , 2017, 1704.01086.

[5]  Faisal Ahmed,et al.  Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.

[6]  J. Hone,et al.  High Electric Field Carrier Transport and Power Dissipation in Multilayer Black Phosphorus Field Effect Transistor with Dielectric Engineering , 2016, 1610.09951.

[7]  E. Pop,et al.  Electrical and Thermoelectric Transport by Variable Range Hopping in Thin Black Phosphorus Devices. , 2016, Nano letters.

[8]  X. Tao,et al.  Current crowding in two-dimensional black-phosphorus field-effect transistors , 2016 .

[9]  Xiaochi Liu,et al.  P‐Type Polar Transition of Chemically Doped Multilayer MoS2 Transistor , 2015, Advanced materials.

[10]  Le Cai,et al.  Ultrashort Channel Length Black Phosphorus Field-Effect Transistors. , 2015, ACS nano.

[11]  E. Pop,et al.  Bright visible light emission from graphene. , 2015, Nature nanotechnology.

[12]  M. Engel,et al.  Power Dissipation and Electrical Breakdown in Black Phosphorus. , 2015, Nano letters.

[13]  Takashi Taniguchi,et al.  Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. , 2015, Nature nanotechnology.

[14]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[15]  Carrier transport at the metal-MoS2 interface. , 2015, Nanoscale.

[16]  Rostislav A. Doganov,et al.  Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere , 2014, Nature Communications.

[17]  P. Ye,et al.  Semiconducting black phosphorus: synthesis, transport properties and electronic applications. , 2014, Chemical Society reviews.

[18]  G. Su,et al.  Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. , 2014, Physical chemistry chemical physics : PCCP.

[19]  Marcel Demarteau,et al.  Ambipolar phosphorene field effect transistor. , 2014, ACS nano.

[20]  Hao Jiang,et al.  Black phosphorus radio-frequency transistors. , 2014, Nano letters.

[21]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[22]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[23]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[24]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[25]  M. Bae,et al.  Focused-laser-enabled p-n junctions in graphene field-effect transistors. , 2013, ACS nano.

[26]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[27]  Y. Leblebici,et al.  Impact ionization and carrier multiplication in graphene , 2012, 1208.0776.

[28]  H. Kurz,et al.  Current saturation and voltage gain in bilayer graphene field effect transistors. , 2012, Nano letters.

[29]  Y. Kadoya,et al.  Extraordinary carrier multiplication gated by a picosecond electric field pulse , 2011, Nature communications.

[30]  Takashi Taniguchi,et al.  Hot Carrier–Assisted Intrinsic Photoresponse in Graphene , 2011, Science.

[31]  P. Avouris,et al.  Raman and photocurrent imaging of electrical stress-induced p-n junctions in graphene. , 2011, ACS nano.

[32]  Paul L. McEuen,et al.  Supporting Online Material for Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes , 2009 .

[33]  C. Bulutay,et al.  Auger recombination and carrier multiplication in embedded silicon and germanium nanocrystals , 2007, 0709.1329.

[34]  P. Avouris,et al.  Impact Excitation by Hot Carriers in Carbon Nanotubes , 2006, cond-mat/0608678.

[35]  A. Nozik Quantum dot solar cells , 2002 .