Methods for estimating stability regions with applications to power systems

A specialized method for constructing a hyper-ellipse that resides inside the stability regions of a class of nonlinear autonomous systems such as electric power systems is provided. This method is further generalized to estimate the stability region of a fairly general class of high dimension nonlinear autonomous systems. Applications of the introduced results to power system transient stability analysis are described, together with numerical examples. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  A. Levin An analytical method of estimating the domain of attraction for polynomial differential equations , 1994, IEEE Trans. Autom. Control..

[2]  H. Yee,et al.  Transient stability of multimachine systems with saturable exciters , 1980 .

[3]  Fang Dazhong,et al.  Evaluation of transient stability limit using a transient time margin sensitivity approach , 1999 .

[4]  Zhihua Qu,et al.  Global robust adaptive control of power systems , 1994 .

[5]  Chia-Chi Chu,et al.  Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective , 1995, Proc. IEEE.

[6]  Young-Hyun Moon,et al.  Estimating the domain of attraction for power systems via a group of damping-reflected energy functions , 2000, Autom..

[7]  Youyi Wang,et al.  Decentralised control of multimachine power systems with guaranteed performance , 2000 .

[8]  Felix F. Wu,et al.  Stability regions of nonlinear autonomous dynamical systems , 1988 .

[9]  Daizhan Cheng,et al.  Nonlinear decentralized saturated controller design for power systems , 2003, IEEE Trans. Control. Syst. Technol..

[10]  M. Pavella,et al.  Direct methods for studying dynamics of large-scale electric power systems - A survey , 1985, Autom..

[11]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.

[12]  K. R. Padiyar,et al.  ENERGY FUNCTION ANALYSIS FOR POWER SYSTEM STABILITY , 1990 .

[13]  James D. McCalley,et al.  Application of robust control to sustained oscillations in power systems , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[14]  E. Davison,et al.  A computational method for determining quadratic lyapunov functions for non-linear systems , 1971 .

[15]  Lamine Mili,et al.  Catastrophic Failures in Power Systems: Causes, Analyses, and Countermeasures , 2005, Proceedings of the IEEE.

[16]  M. Pai Energy function analysis for power system stability , 1989 .

[17]  Shijie Cheng,et al.  An improved Lyapunov function for power system stability analysis , 1996 .

[18]  Zhihua Qu,et al.  Multi machine power system excitation control design via theories of feedback linearization control and nonlinear robust control , 2000, Int. J. Syst. Sci..

[19]  Mia Loccufier,et al.  A new trajectory reversing method for the estimation of asymptotic stability regions , 1995 .

[20]  Ni Yi-xin A Method for Analyzing the Impact of Parameter Uncertainties on Transient Stability , 2006 .