Linearity of volume hologram out-coupling for wavelength-division demultiplexing

Close-form expressions are used to analyze the spatial and angular linearity of the out-coupling volume holograms in wavelength division multiplexing/demultiplexing (WDM/WDDM). Optimal spatial linear out-coupling regimes are located. Some design criteria for volume holographic WDDM applicable to 800nm, 1300nm, and 1550nm optical wavelength window are addressed. As a design example, we deploy these criteria to design a passive surface normal input/output wavelength division demultiplexer working in the wavelength range of 768-864 nm. Coupling of the demultiplexed optical signal from the substrate modes to a linear multi-mode fiber array is verified with experiment. The importance of the spatial linearity of the out-coupling in volume holographic WDDM structure is highlighted and possible coupling of the signal to linear single-mode fiber array is mentioned.

[1]  Masatoshi Saruwatari High-Speed Optical Signal Processing for Communications Systems , 1995 .

[2]  J R Salgueiro,et al.  Fabrication of a multichannel wavelength-division multiplexing-passive optical net demultiplexer with arrayed-waveguide gratings and diffractive optical elements. , 1999, Applied optics.

[3]  J. P. Ryan,et al.  WDM: North American deployment trends , 1998, IEEE Commun. Mag..

[4]  P. Green Optical Networking has Arrived , 1998, IEEE Communications Magazine.

[5]  William J. Gambogi,et al.  Holographic transmission elements using improved photopolymer films , 1991, Optics & Photonics.

[6]  Lifeng Li Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings , 1996 .

[7]  N. S. Bergano Wavelength Division Multiplexing in Long-Haul Transmission Systems , 1996 .

[8]  K. Iga,et al.  Simple optical wavelength-division multiplexer component that uses the lateral focusing scheme of a planar microlens. , 1994, Applied optics.

[9]  Lifeng Li,et al.  Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity , 1993, OSA Annual Meeting.

[10]  T Jannson,et al.  Large fanout optical interconnects using thick holographic gratings and substrate wave propagation. , 1992, Applied optics.

[11]  R. T. Chen,et al.  Path-reversed substrate- guided-wave optical interconnects for wavelength-division demultiplexing. , 1999, Applied optics.

[12]  R. R. A. Syms,et al.  Practical volume holography , 1990 .

[13]  Tomasz P. Jannson,et al.  Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms , 1992 .

[14]  S. Suzuki,et al.  Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution , 1990 .

[15]  T. Gaylord,et al.  Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings , 1995 .

[16]  Thomas K. Gaylord,et al.  Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach , 1995 .

[17]  Ray T. Chen,et al.  Multimode-fiber-compatible WDM/WDDM with an ultralarge-wavelength dynamic range , 1999, Photonics West.

[18]  James Jang-Hun Yeh,et al.  Design issues for substrate-mode holograms used in optical interconnects , 1994, Electronic Imaging.

[19]  R. T. Chen,et al.  Waveguide-hologram-based wavelength-multiplexed pseudoanalog true-time-delay module for wideband phased-array antennas. , 1999, Applied optics.

[20]  K. Nosu,et al.  Review and status of wavelength-division-multiplexing technology and its application , 1984 .

[21]  Ray T. Chen,et al.  Four-channel multimode wavelength division multiplexer and demultiplexer based on photopolymer volume holographic gratings and substrate-guided waves , 1998, Other Conferences.

[22]  Richard E. Wagner,et al.  MONET: multiwavelength optical networking , 1996 .

[23]  R K Kostuk,et al.  Substrate-mode holograms used in optical interconnects: design issues. , 1995, Applied optics.

[24]  R.T. Chen,et al.  Three-dimensionally interconnected bidirectional optical backplane , 1999, IEEE Photonics Technology Letters.

[25]  F Zhao,et al.  Temperature sensitivity of passive holographic wavelength-division multiplexers-demultiplexers. , 2000, Applied optics.

[26]  Ray T. Chen,et al.  Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects , 1997 .

[27]  R. Kostuk,et al.  Polarization properties of substrate-mode holographic interconnects. , 1990, Applied optics.

[28]  Casimer M. DeCusatis,et al.  OPTICAL DATA COMMUNICATION : FUNDAMENTALS AND FUTURE DIRECTIONS , 1998 .

[29]  Y Ishii,et al.  Wavelength demultiplexer in multimode fiber that uses optimized holographic optical elements. , 1993, Applied optics.

[30]  D C Su,et al.  Substrate-mode holographic polarization-division multi/demultiplexer for optical communications. , 1994, Applied optics.

[31]  John Kelly,et al.  Holographic optical element (HOE) imaging in DuPont holographic photopolymers , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[32]  John L. Zyskind,et al.  Multiwavelength Optical Networking , 1997 .

[33]  William J. Gambogi,et al.  Advances and applications of DuPont holographic photopolymers , 1994, Other Conferences.

[34]  H. Haus,et al.  Molding light into solitons , 1993, IEEE Spectrum.

[35]  R. K. Butler,et al.  Wave-division multiplexing in the Sprint long distance network , 1998, IEEE Commun. Mag..

[36]  Yang-Tung Huang,et al.  Wavelength-division-multiplexing and -demultiplexing by using a substrate-mode grating pair , 1992 .

[37]  Alan E. Willner Mining the optical bandwidth for a terabit per second , 1997 .