Derived subdivisions make every PL sphere polytopal

We give a simple proof that some iterated derived subdivision of every PL sphere is combinatorially equivalent to the boundary of a simplicial polytope, thereby resolving a problem of Billera (personal communication).

[1]  Jean-Marc Schlenker,et al.  INFINITESIMAL RIGIDITY OF POLYHEDRA WITH VERTICES IN CONVEX POSITION , 2007, 0711.1981.

[2]  J. L. Bryant Piecewise Linear Topology , 2001 .

[3]  A. Mijatović Simplifying triangulations of S3 , 2003 .

[4]  G. C. Shephard,et al.  Stellar subdivisions of boundary complexes of convex polytopes , 1974 .

[5]  Jaroslaw Wlodarczyk,et al.  Decomposition of Birational Toric Maps in Blow-Ups and Blow-Downs , 1997 .

[6]  Alexander Nabutovsky,et al.  Einstein structures: Existence versus uniqueness , 1995 .

[7]  N. Mnev The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .

[8]  Francisco Santos Geometric bistellar flips. The setting, the context and a construction , 2006 .

[9]  E. C. Zeeman,et al.  Seminar on combinatorial topology , 1963 .

[10]  G. Ziegler Lectures on Polytopes , 1994 .

[11]  Martin D. Davis,et al.  Computability and Unsolvability , 1959, McGraw-Hill Series in Information Processing and Computers.

[12]  K. Matsuki Birational Geometry of Toric Varieties , 2002 .

[13]  F. Santos Non-connected toric Hilbert schemes , 2002, math/0204044.

[14]  U. Pachner,et al.  Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten , 1987 .

[15]  W. B. R. Lickorish,et al.  Unshellable Triangulations of Spheres , 1991, Eur. J. Comb..

[16]  P. Mani,et al.  Shellable Decompositions of Cells and Spheres. , 1971 .