Derived subdivisions make every PL sphere polytopal
暂无分享,去创建一个
[1] Jean-Marc Schlenker,et al. INFINITESIMAL RIGIDITY OF POLYHEDRA WITH VERTICES IN CONVEX POSITION , 2007, 0711.1981.
[2] J. L. Bryant. Piecewise Linear Topology , 2001 .
[3] A. Mijatović. Simplifying triangulations of S3 , 2003 .
[4] G. C. Shephard,et al. Stellar subdivisions of boundary complexes of convex polytopes , 1974 .
[5] Jaroslaw Wlodarczyk,et al. Decomposition of Birational Toric Maps in Blow-Ups and Blow-Downs , 1997 .
[6] Alexander Nabutovsky,et al. Einstein structures: Existence versus uniqueness , 1995 .
[7] N. Mnev. The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .
[8] Francisco Santos. Geometric bistellar flips. The setting, the context and a construction , 2006 .
[9] E. C. Zeeman,et al. Seminar on combinatorial topology , 1963 .
[10] G. Ziegler. Lectures on Polytopes , 1994 .
[11] Martin D. Davis,et al. Computability and Unsolvability , 1959, McGraw-Hill Series in Information Processing and Computers.
[12] K. Matsuki. Birational Geometry of Toric Varieties , 2002 .
[13] F. Santos. Non-connected toric Hilbert schemes , 2002, math/0204044.
[14] U. Pachner,et al. Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten , 1987 .
[15] W. B. R. Lickorish,et al. Unshellable Triangulations of Spheres , 1991, Eur. J. Comb..
[16] P. Mani,et al. Shellable Decompositions of Cells and Spheres. , 1971 .