Maximum relative entropy-based probabilistic inference in fatigue crack damage prognostics

Abstract A general probabilistic inference procedure is proposed in this paper based on the Maximum relative Entropy (MrE) approach which generalizes both Bayesian and Maximum Entropy (MaxEnt) inference methodologies. The construction of the conditional probability (likelihood function) for general model-based inference problems is discussed in detail to systematically manage uncertainties from mechanism modeling, model parameters, and measurements. Analytical and numerical examples are used to investigate the sequence effect in the probabilistic inference using point observations and moment constraints. The developed methodology is applied to the engineering fatigue crack growth problem with experimental data for demonstration and validation. Following this, a detailed comparison between the classical Bayesian inference and the MrE inference is given.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  Shahram Sarkani,et al.  Fatigue of welded steel joints under wideband loadings , 1996 .

[3]  Igor Rychlik,et al.  Fatigue life prediction for a vessel sailing the North Atlantic route , 2007 .

[4]  Nathan Siu,et al.  Bayesian parameter estimation in probabilistic risk assessment , 1998 .

[5]  Andrew McCallum,et al.  Maximum Entropy Markov Models for Information Extraction and Segmentation , 2000, ICML.

[6]  Dani Gamerman,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .

[7]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[8]  J. Tenenbaum,et al.  Theory-based Bayesian models of inductive learning and reasoning , 2006, Trends in Cognitive Sciences.

[9]  Adom Giffin,et al.  From Physics to Economics: An Econometric Example Using Maximum Relative Entropy , 2009, ArXiv.

[10]  Wen-Fang Wu,et al.  A study of stochastic fatigue crack growth modeling through experimental data , 2003 .

[11]  Adom Giffin Maximum Entropy: The Universal Method for Inference , 2008 .

[12]  C. Guedes Soares,et al.  Fatigue reliability of the ship hull girder accounting for inspection and repair , 1996 .

[13]  D. Wilkie,et al.  Muscular fatigue investigated by phosphorus nuclear magnetic resonance , 1978, Nature.

[14]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[15]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[16]  E. Jaynes Probability theory : the logic of science , 2003 .

[17]  Arthur P. Dempster,et al.  A Generalization of Bayesian Inference , 1968, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[18]  Kazimierz Sobczyk,et al.  Information dynamics : Premises, challenges and results , 2001 .

[19]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[20]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[21]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[22]  Douglas J. Miller,et al.  Maximum entropy econometrics: robust estimation with limited data , 1996 .

[23]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[24]  J. Skilling The Axioms of Maximum Entropy , 1988 .

[25]  Ariel Caticha,et al.  Updating Probabilities with Data and Moments , 2007, ArXiv.

[26]  J. Beck,et al.  Bayesian State and Parameter Estimation of Uncertain Dynamical Systems , 2006 .

[27]  Xuefei Guan,et al.  Model selection, updating, and averaging for probabilistic fatigue damage prognosis , 2011 .

[28]  Edwin T. Jaynes Prior Probabilities , 2010, Encyclopedia of Machine Learning.

[29]  Adam L. Berger,et al.  A Maximum Entropy Approach to Natural Language Processing , 1996, CL.

[30]  P. Goel,et al.  The Statistical Nature of Fatigue Crack Propagation , 1979 .

[31]  Joseph Y. Halpern,et al.  Updating Probabilities , 2002, UAI.

[32]  Shane M. Palmquist,et al.  Fatigue evaluation of highway bridges , 1999 .

[33]  Jingjing He,et al.  An efficient analytical Bayesian method for reliability and system response updating based on Laplace and inverse first-order reliability computations , 2012, Reliab. Eng. Syst. Saf..

[34]  Wen-Fang Wu,et al.  Probabilistic models of fatigue crack propagation and their experimental verification , 2004 .

[35]  H. G. Natke Updating computational models in the frequency domain based on measured data: a survey , 1988 .

[36]  R. Johnson,et al.  Properties of cross-entropy minimization , 1981, IEEE Trans. Inf. Theory.

[37]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[38]  Jean-Michel Marin,et al.  Bayesian Modelling and Inference on Mixtures of Distributions , 2005 .

[39]  G S Campbell,et al.  A Survey of Serious Aircraft Accidents Involving Fatigue Fracture. Volume 2. Rotary-Wing Aircraft (Etude sur des Accidents Importants d'Avions du aux Effets des Fractures de Fatigue. Volume 2. Effets sur des Helicopteres). , 1983 .