The microbiome of uncontacted Amerindians

Fecal, oral, and skin biomes of isolated Amerindians show higher human bacterial diversity including antibiotic resistance genes. Most studies of the human microbiome have focused on westernized people with life-style practices that decrease microbial survival and transmission, or on traditional societies that are currently in transition to westernization. We characterize the fecal, oral, and skin bacterial microbiome and resistome of members of an isolated Yanomami Amerindian village with no documented previous contact with Western people. These Yanomami harbor a microbiome with the highest diversity of bacteria and genetic functions ever reported in a human group. Despite their isolation, presumably for >11,000 years since their ancestors arrived in South America, and no known exposure to antibiotics, they harbor bacteria that carry functional antibiotic resistance (AR) genes, including those that confer resistance to synthetic antibiotics and are syntenic with mobilization elements. These results suggest that westernization significantly affects human microbiome diversity and that functional AR genes appear to be a feature of the human microbiome even in the absence of exposure to commercial antibiotics. AR genes are likely poised for mobilization and enrichment upon exposure to pharmacological levels of antibiotics. Our findings emphasize the need for extensive characterization of the function of the microbiome and resistome in remote nonwesternized populations before globalization of modern practices affects potentially beneficial bacteria harbored in the human body.

[1]  H. Forssberg,et al.  Normal gut microbiota modulates brain development and behavior , 2011, Proceedings of the National Academy of Sciences.

[2]  R. Knight,et al.  The bacterial microbiota in the oral mucosa of rural Amerindians. , 2010, Microbiology.

[3]  D. Faith Conservation evaluation and phylogenetic diversity , 1992 .

[4]  Jesse R. Zaneveld,et al.  Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences , 2013, Nature Biotechnology.

[5]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[6]  R. Santos South American Indians: a case study in evolution , 1989 .

[7]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[8]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[9]  Rob Knight,et al.  Reconstructing the Microbial Diversity and Function of Pre-Agricultural Tallgrass Prairie Soils in the United States , 2013, Science.

[10]  H. Flint,et al.  Comparative Analysis of Sequences Flanking tet(W) Resistance Genes in Multiple Species of Gut Bacteria , 2006, Antimicrobial Agents and Chemotherapy.

[11]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[12]  M. Blaser,et al.  Antibiotics in early life alter the murine colonic microbiome and adiposity , 2012, Nature.

[13]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[14]  G. Church,et al.  Functional Characterization of the Antibiotic Resistance Reservoir in the Human Microflora , 2009, Science.

[15]  A. Charlton Medicinal uses of tobacco in history. , 2004, Journal of the Royal Society of Medicine.

[16]  M. Sommer,et al.  Context matters - the complex interplay between resistome genotypes and resistance phenotypes. , 2012, Current opinion in microbiology.

[17]  Molly K. Gibson,et al.  Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology , 2014, The ISME Journal.

[18]  Eric P. Nawrocki,et al.  An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea , 2011, The ISME Journal.

[19]  Jesper V Olsen,et al.  Pathogens and host immunity in the ancient human oral cavity , 2014, Nature Genetics.

[20]  D. Falush,et al.  Inference of Bacterial Microevolution Using Multilocus Sequence Data , 2007, Genetics.

[21]  William A. Walters,et al.  Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms , 2012, The ISME Journal.

[22]  Bernard Henrissat,et al.  Three Genomes from the Phylum Acidobacteria Provide Insight into the Lifestyles of These Microorganisms in Soils , 2009, Applied and Environmental Microbiology.

[23]  G. B. Golding,et al.  Antibiotic resistance is ancient , 2011, Nature.

[24]  O. Gascuel,et al.  Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. , 2006, Systematic biology.

[25]  Teresa M. Coque,et al.  What is a resistance gene? Ranking risk in resistomes , 2014, Nature Reviews Microbiology.

[26]  E. Stackebrandt,et al.  Knoellia sinensis gen. nov., sp. nov. and Knoellia subterranea sp. nov., two novel actinobacteria isolated from a cave. , 2002, International journal of systematic and evolutionary microbiology.

[27]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[28]  H. Ochman,et al.  Long-Term Shifts in Patterns of Antibiotic Resistance in Enteric Bacteria , 2000, Applied and Environmental Microbiology.

[29]  John W. Beaber,et al.  SOS response promotes horizontal dissemination of antibiotic resistance genes , 2004, Nature.

[30]  R. Knight,et al.  UniFrac: a New Phylogenetic Method for Comparing Microbial Communities , 2005, Applied and Environmental Microbiology.

[31]  J. E. Rogers,et al.  The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens , 2012 .

[32]  J. Clemente,et al.  The Long-Term Stability of the Human Gut Microbiota , 2013 .

[33]  Knoellia locipacati sp. nov., from soil of the Demilitarized Zone in South Korea. , 2012, International journal of systematic and evolutionary microbiology.

[34]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[35]  Antonio Gonzalez,et al.  Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences , 2014, PeerJ.

[36]  Sanket Patel,et al.  Pediatric Fecal Microbiota Harbor Diverse and Novel Antibiotic Resistance Genes , 2013, PloS one.

[37]  Rodrigo Lopez,et al.  A new bioinformatics analysis tools framework at EMBL–EBI , 2010, Nucleic Acids Res..

[38]  P. Chesson Mechanisms of Maintenance of Species Diversity , 2000 .

[39]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[40]  Molly K. Gibson,et al.  Bacterial phylogeny structures soil resistomes across habitats , 2014, Nature.

[41]  J. Clemente,et al.  Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within Humans , 2011, Science.

[42]  M. Mulvey,et al.  ampC gene expression in promoter mutants of cefoxitin-resistant Escherichia coli clinical isolates. , 2007, FEMS microbiology letters.

[43]  W. Hanage,et al.  eBURST: Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequence Typing Data , 2004, Journal of bacteriology.

[44]  B. Roe,et al.  A core gut microbiome in obese and lean twins , 2008, Nature.

[45]  Renaud Gaujoux,et al.  A flexible R package for nonnegative matrix factorization , 2010, BMC Bioinformatics.

[46]  S. Levy,et al.  Carriage of antibiotic-resistant fecal bacteria in Nepal reflects proximity to Kathmandu. , 2001, The Journal of infectious diseases.

[47]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[48]  R. Knight,et al.  Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns , 2010, Proceedings of the National Academy of Sciences.

[49]  Daniel Falush,et al.  Sex and virulence in Escherichia coli: an evolutionary perspective , 2006, Molecular microbiology.

[50]  G. Rossolini,et al.  High prevalence of acquired antimicrobial resistance unrelated to heavy antimicrobial consumption. , 2004, The Journal of infectious diseases.

[51]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[52]  Robert G. Beiko,et al.  STAMP: statistical analysis of taxonomic and functional profiles , 2014, Bioinform..

[53]  L. T. Angenent,et al.  Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy , 2012, Cell.

[54]  N. Blom,et al.  The microbiome of New World vultures , 2014, Nature Communications.

[55]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[56]  Jean-Michel Claverie,et al.  Phylogeny.fr: robust phylogenetic analysis for the non-specialist , 2008, Nucleic Acids Res..

[57]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[58]  Se Jin Song,et al.  Cohabiting family members share microbiota with one another and with their dogs , 2013, eLife.

[59]  Paul C. Blainey,et al.  Digital MDA for enumeration of total nucleic acid contamination , 2010, Nucleic acids research.

[60]  Dominique L. Monnet,et al.  In Vivo Transfer of the vanA Resistance Gene from an Enterococcus faecium Isolate of Animal Origin to an E. faecium Isolate of Human Origin in the Intestines of Human Volunteers , 2006, Antimicrobial Agents and Chemotherapy.

[61]  H. Ochman,et al.  Standard reference strains of Escherichia coli from natural populations , 1984, Journal of bacteriology.

[62]  M. Blaser,et al.  Altering the Intestinal Microbiota during a Critical Developmental Window Has Lasting Metabolic Consequences , 2014, Cell.

[63]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[64]  Martin C. J. Maiden,et al.  Bioinformatics Applications Note Sequence Type Analysis and Recombinational Tests (start) , 2022 .

[65]  Richard A. Flavell,et al.  Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity , 2012, Nature.

[66]  Amanda G. Henry,et al.  Gut microbiome of the Hadza hunter-gatherers , 2014, Nature Communications.

[67]  P. Alegre CUNILL GRAU, Pedro. Historia de la Geografía de Venezuela. Siglos XVI-XX Caracas: Ministerio del Poder Popular para la Educación Superior; Consejo Nacional de Universidades, 2009. , 2011, Documents d'Anàlisi Geogràfica.

[68]  E. Gotuzzo,et al.  Antibiotic resistance in a very remote Amazonas community. , 2009, International journal of antimicrobial agents.

[69]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[70]  R. Edwards,et al.  Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets , 2011, PloS one.

[71]  F. Marlowe,et al.  Hunter-Gatherer Energetics and Human Obesity , 2012, PloS one.

[72]  Jonathan M. Chase,et al.  The metacommunity concept: a framework for multi-scale community ecology , 2004 .

[73]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.