A comparison of NSGA-II, DEMO, and EM-MOPSO for the multi-objective design of concentric rings antenna arrays

A comparison between different modern multi-objective optimization methods applied to the design of concentric rings antenna arrays is presented in this paper. This design of concentric rings antenna arrays considers the optimization of the amplitude and phase excitations across the antenna elements in order to generate the trade-off curves between side lobe level and directivity for a scannable pattern with optimal performance in the whole azimuth plane. Simulation results by using evolutionary multi-objective optimization methods, such as: NSGA-II, DEMO, and EM-MOPSO are provided in this document. Furthermore, a comparative analysis of the performance between these algorithms is presented.

[1]  Marco A. Panduro,et al.  Design of steerable concentric rings array for low side lobe level , 2012, Sci. Iran..

[2]  Carlos A. Brizuela,et al.  Evolutionary multi‐objective design of non‐uniform circular phased arrays , 2008 .

[3]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[4]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[5]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[6]  Moawad I. Dessouky,et al.  A Novel Tapered Beamforming Window for Uniform Concentric Circular Arrays , 2006 .

[7]  Li Zhang,et al.  Multiobjective optimization design of concentric ring arrays with 3D beam scanning using differential evolution algorithm , 2013 .

[8]  Chiman Kwan,et al.  3-D array pattern synthesis with frequency Invariant property for concentric ring array , 2006, IEEE Transactions on Signal Processing.

[9]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[10]  X. Yao Evolving Artificial Neural Networks , 1999 .

[11]  M. Janga Reddy,et al.  An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design , 2007 .

[12]  Yong-Chang Jiao,et al.  Optimization of Concentric Ring Array Geometry for 3D Beam Scanning , 2012 .

[13]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[14]  Carlos A. Brizuela,et al.  A multi-objective approach in the linear antenna array design , 2005 .

[15]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[16]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[17]  Y. Rahmat-Samii,et al.  Advances in Particle Swarm Optimization for Antenna Designs: Real-Number, Binary, Single-Objective and Multiobjective Implementations , 2007, IEEE Transactions on Antennas and Propagation.

[18]  Carlos A. Brizuela,et al.  Design of electronically steerable linear arrays with evolutionary algorithms , 2008, Appl. Soft Comput..

[19]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[20]  N. Goto,et al.  A pattern synthesis of circular arrays by phase adjustment , 1980 .

[21]  René Thomsen,et al.  Multimodal optimization using crowding-based differential evolution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[22]  Peng-Fei Zhang,et al.  A Modified PSO for Low Sidelobe Concentric Ring Arrays Synthesis with Multiple Constraints , 2009 .

[23]  Russell C. Eberhart,et al.  chapter seven – The Particle Swarm , 2001 .

[24]  Li Zhang,et al.  Design of Wideband Concentric-Ring Arrays with Three-Dimensional Beam Scanning Based on the Optimization of Array Geometry , 2012 .

[25]  Li-Shi Ren,et al.  Pattern Synthesis of Concentric Ring Array Antennas by Differential Evolution Algorithm , 2011 .

[26]  Yahya Rahmat-Samii,et al.  Electromagnetic Optimization by Genetic Algorithms , 1999 .

[27]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[28]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[29]  Carlos A. Brizuela,et al.  A Comparison of Genetic Algorithms, Particle Swarm Optimization and the Differential Evolution Method for the Design of Scannable Circular Antenna Arrays , 2009 .

[30]  R. Haupt,et al.  Optimized Element Spacing for Low Sidelobe Concentric Ring Arrays , 2008, IEEE Transactions on Antennas and Propagation.

[31]  Yong-Chang Jiao,et al.  Synthesis of Circular Antenna Array Using Crossed Particle Swarm Optimization Algorithm , 2006 .

[32]  R. Vescovo,et al.  Constrained and unconstrained synthesis of array factor for circular arrays , 1995 .