Tactile devices to sense touch on a par with a human finger.

Our sense of touch enables us to recognize texture and shape and to grasp objects. The challenge in making an electronic skin which can emulate touch for applications such as a humanoid robot or minimally invasive and remote surgery is both in mimicking the (passive) mechanical properties of the dermis and the characteristics of the sensing mechanism, especially the intrinsic digital nature of neurons. Significant progress has been made towards developing an electronic skin by using a variety of materials and physical concepts, but the challenge of emulating the sense of touch remains. Recently, a nanodevice was developed that has achieved the resolution to decipher touch on a par with the human finger; this resolution is over an order of magnitude improvement on previous devices with a sensing area larger than 1 cm(2). With its robust mechanical properties, this new system represents an important step towards the realization of artificial touch.

[1]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[2]  W. P. Mason,et al.  Use of Piezoresistive Materials in the Measurement of Displacement, Force, and Torque , 1957 .

[3]  V. Wright,et al.  Mechanical properties of skin: a bioengineering study of skin structure. , 1966, Journal of applied physiology.

[4]  D. R. Veronda,et al.  Mechanical characterization of skin-finite deformations. , 1970, Journal of biomechanics.

[5]  H. Scher,et al.  Percolation on a Continuum and the Localization-Delocalization Transition in Amorphous Semiconductors , 1971 .

[6]  S. Kirkpatrick Percolation and Conduction , 1973 .

[7]  J C Barbenel,et al.  The time-dependent mechanical properties of skin. , 1977, The Journal of investigative dermatology.

[8]  R. Johansson Tactile sensibility in the human hand: receptive field characteristics of mechanoreceptive units in the glabrous skin area. , 1978, The Journal of physiology.

[9]  A. Vallbo,et al.  Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. , 1979, Physiological reviews.

[10]  C H Daly,et al.  Age-related changes in the mechanical properties of human skin. , 1979, The Journal of investigative dermatology.

[11]  R. Johansson,et al.  Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. , 1979, The Journal of physiology.

[12]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  J. Ochoa,et al.  Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. , 1983, The Journal of physiology.

[14]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[15]  The Mechanics of Equibiaxial Hydrostatic Deformation in Solid State: Isotactic Polypropylene , 1987 .

[16]  S. Bolanowski,et al.  Four channels mediate the mechanical aspects of touch. , 1988, The Journal of the Acoustical Society of America.

[17]  A Viidik,et al.  The role of elastin in the mechanical properties of skin. , 1988, Journal of biomechanics.

[18]  Analysis of the effects of pH and tensile deformation on the small-deformation modulus of calf skin. , 1988, Connective tissue research.

[19]  M. Srinivasan,et al.  Tactile detection of slip: surface microgeometry and peripheral neural codes. , 1990, Journal of neurophysiology.

[20]  J M Mansour,et al.  Dynamic measurement of the viscoelastic properties of skin. , 1991, Journal of biomechanics.

[21]  A. Heeger,et al.  Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers , 1992 .

[22]  E. S. Kolesar,et al.  Object imaging with a piezoelectric robotic tactile sensor , 1995 .

[23]  M. Trulsson,et al.  Receptor encoding of moving tactile stimuli in humans. I. Temporal pattern of discharge of individual low-threshold mechanoreceptors , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  R. Waterston,et al.  Interaction Between a Putative Mechanosensory Membrane Channel and a Collagen , 1996, Science.

[25]  P N Brett,et al.  A technique for measuring contact force distribution in minimally invasive surgical procedures , 1997, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[26]  P. Plinkert,et al.  Ein taktiler Sensor zur Gewebedifferenzierung in der Minimal Invasiven HNO-Chirurgie , 1997 .

[27]  James H. Smith,et al.  Micromachined pressure sensors: review and recent developments , 1997 .

[28]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[29]  S. Matsumoto,et al.  A tactile sensor for laparoscopic cholecystectomy , 1997, Surgical Endoscopy.

[30]  D. Polla,et al.  PROCESSING AND CHARACTERIZATION OF PIEZOELECTRIC MATERIALS AND INTEGRATION INTO MICROELECTROMECHANICAL SYSTEMS , 1998 .

[31]  Stephen Ducharme,et al.  Two-dimensional ferroelectric films , 1998, Nature.

[32]  Kazumi Kobayashi,et al.  Relationship between the Structure of Human Finger Tissue and the Location of Tactile Receptors , 1998 .

[33]  Zhang,et al.  Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer , 1998, Science.

[34]  Chih-Ming Ho,et al.  MICRO-ELECTRO-MECHANICAL-SYSTEMS (MEMS) AND FLUID FLOWS , 1998 .

[35]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[36]  R. H. Wieringa,et al.  Electromechanical properties of an ultrathin layer of directionally aligned helical polypeptides. , 1998, Science.

[37]  O. Tohyama,et al.  Fiber-optic tactile microsensor for detecting the position of the tip of a fiberscope , 1999 .

[38]  Scott T. Grafton,et al.  Involvement of visual cortex in tactile discrimination of orientation , 1999, Nature.

[39]  J. Sirohi,et al.  Fundamental Understanding of Piezoelectric Strain Sensors , 1999, Smart Structures.

[40]  A. Prochazka,et al.  Contact-evoked changes in EMG activity during human grasp. , 1999, Journal of neurophysiology.

[41]  Gijsbertus J.M. Krijnen,et al.  A micromachined pressure/flow-sensor , 1999 .

[42]  S Ishiguro,et al.  Diagnosis of the extent of gastric cancers by a new endoscopic ultrasonic tactile sensor. , 2000, Gastrointestinal endoscopy.

[43]  S. Payandeh,et al.  A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments , 2000, Journal of Microelectromechanical Systems.

[44]  Mark H. Lee,et al.  Tactile Sensing: New Directions, New Challenges , 2000, Int. J. Robotics Res..

[45]  G. Zimmer,et al.  New tactile sensor chip with silicone rubber cover , 2000 .

[46]  Z. Prete,et al.  A novel pressure array sensor based on contact resistance variation: Metrological properties , 2001 .

[47]  Paolo Dario,et al.  Humanoids and personal robots: Design and experiments , 2001, J. Field Robotics.

[48]  Peter G. Gillespie,et al.  Molecular basis of mechanosensory transduction , 2001, Nature.

[49]  B. Khuri-Yakub,et al.  Characterization of one-dimensional capacitive micromachined ultrasonic immersion transducer arrays , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[50]  F. Kremer,et al.  Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers , 2001, Nature.

[51]  C. Dekker,et al.  Carbon Nanotube Single-Electron Transistors at Room Temperature , 2001, Science.

[52]  R. Howe,et al.  Tactile imaging of breast masses: first clinical report. , 2001, Archives of surgery.

[53]  H. Asada,et al.  Photoplethysmograph fingernail sensors for measuring finger forces without haptic obstruction , 2001, IEEE Trans. Robotics Autom..

[54]  F. Silver,et al.  Transition from viscous to elastic-based dependency of mechanical properties of self-assembled type I collagen fibers , 2001 .

[55]  M. Mack,et al.  Minimally invasive and robotic surgery. , 2001, JAMA.

[56]  Allison M. Okamura,et al.  Feature Detection for Haptic Exploration with Robotic Fingers , 2001, Int. J. Robotics Res..

[57]  Vincent Hayward,et al.  Force can overcome object geometry in the perception of shape through active touch , 2001, Nature.

[58]  Jack W. Judy,et al.  Microelectromechanical systems (MEMS): fabrication, design and applications , 2001 .

[59]  R. Johansson,et al.  Encoding of Direction of Fingertip Forces by Human Tactile Afferents , 2001, The Journal of Neuroscience.

[60]  F. Silver,et al.  Viscoelastic properties of human skin and processed dermis , 2001, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[61]  Ehud Ahissar,et al.  Importance of Temporal Cues for Tactile Spatial- Frequency Discrimination , 2001, The Journal of Neuroscience.

[62]  D. Foran,et al.  Mechanical implications of the domain structure of fiber-forming collagens: comparison of the molecular and fibrillar flexibilities of the alpha1-chains found in types I-III collagen. , 2002, Journal of theoretical biology.

[63]  J. Lima,et al.  A large area force sensor for smart skin applications , 2002, Proceedings of IEEE Sensors.

[64]  Frederick H. Silver,et al.  Viscoelastic Properties of Self-Assembled Type I Collagen Fibers: Molecular Basis of Elastic and Viscous Behaviors , 2002, Connective tissue research.

[65]  Joseph W. Freeman,et al.  Viscoelastic properties of young and old human dermis: A proposed molecular mechanism for elastic energy storage in collagen and elastin , 2002 .

[66]  Eric S. Snow,et al.  Random networks of carbon nanotubes as an electronic material , 2003 .

[67]  Mitsuhiro Shikida,et al.  Active tactile sensor for detecting contact force and hardness of an object , 2003 .

[68]  Y. M. Shkel,et al.  Electrostriction enhancement of solid-state capacitance sensing , 2003 .

[69]  F. Silver,et al.  Mechanobiology of force transduction in dermal tissue , 2003, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[70]  I. Kinloch,et al.  Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites , 2003 .

[71]  K. Rajanna,et al.  Tactile sensor based on piezoelectric resonance , 2002, Proceedings of IEEE Sensors.

[72]  Christian A. Martin,et al.  Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites , 2004 .

[73]  A. Goodwin,et al.  Tactile discrimination of gratings , 2004, Experimental Brain Research.

[74]  Hiroaki Kitano,et al.  morph3: a compact-size humanoid robot system capable of acrobatic behavior , 2004, Adv. Robotics.

[75]  Yuyuan Tian,et al.  Changes in the conductance of single peptide molecules upon metal-ion binding. , 2004, Angewandte Chemie.

[76]  B. Edin Quantitative analyses of dynamic strain sensitivity in human skin mechanoreceptors. , 2004, Journal of neurophysiology.

[77]  J. Loos,et al.  Preparation of Conductive Nanotube–Polymer Composites Using Latex Technology , 2004 .

[78]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[79]  M. Shikida,et al.  Amicromachined active tactile sensor for hardness detection , 2004 .

[80]  Zhong Lin Wang,et al.  Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. , 2004, Nano letters.

[81]  Zhong Lin Wang,et al.  Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope , 2004 .

[82]  R. Johansson,et al.  First spikes in ensembles of human tactile afferents code complex spatial fingertip events , 2004, Nature Neuroscience.

[83]  W Gregory Sawyer,et al.  Super-Compressible Foamlike Carbon Nanotube Films , 2005, Science.

[84]  Charles M Lieber,et al.  Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[85]  G. Grüner,et al.  Integration of cell membranes and nanotube transistors. , 2005, Nano letters.

[86]  Khalil Arshak,et al.  Design of a new thick film capacitive pressure and circuitry interface , 2005 .

[87]  S. Omata,et al.  Development of Tactile Mapping system for the stiffness characterization of tissue slice using novel tactile sensing technology , 2005 .

[88]  Kenneth G. Sharp,et al.  Star alkoxysilane molecules, gels and appreciably tough glasses , 2005 .

[89]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[90]  T. Kamei,et al.  Novel surface structure and its fabrication process for MEMS fingerprint sensor , 2005, IEEE Transactions on Electron Devices.

[91]  Yan-Bin Jia Localization of curved parts through continual touch , 2005, IEEE Transactions on Robotics.

[92]  Elisa Riedo,et al.  Elastic property of vertically aligned nanowires. , 2005, Nano letters.

[93]  Jason H. Rouse Polymer-assisted dispersion of single-walled carbon nanotubes in alcohols and applicability toward carbon nanotube/sol-gel composite formation. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[94]  Hylke B. Akkerman,et al.  Towards molecular electronics with large-area molecular junctions , 2006, Nature.

[96]  Eric Maël,et al.  A sensor for dynamic tactile information with applications in human-robot interaction and object exploration , 2006, Robotics Auton. Syst..

[97]  R. Ramadoss,et al.  MEMS-Capacitive Pressure Sensor Fabricated Using Printed-Circuit-Processing Techniques , 2006, IEEE Sensors Journal.

[98]  V. Maheshwari,et al.  High-Resolution Thin-Film Device to Sense Texture by Touch , 2006, Science.

[99]  M. Ishida,et al.  Monolithic silicon smart tactile image sensor with integrated strain sensor array on pneumatically swollen single-diaphragm structure , 2006, IEEE Transactions on Electron Devices.

[100]  Paolo Dario,et al.  A biomimetic sensor for a crawling minirobot , 2006, Robotics Auton. Syst..

[101]  Richard Crowder,et al.  Toward Robots That Can Sense Texture by Touch , 2006, Science.

[102]  J. Heo,et al.  Tactile sensor arrays using fiber Bragg grating sensors , 2006 .

[103]  P. Yang,et al.  Giant piezoresistance effect in silicon nanowires , 2006, Nature nanotechnology.

[104]  Elastomeric carbon nanotube circuits for local strain sensing , 2006, cond-mat/0606463.

[105]  N. J. Tao,et al.  Electron transport in molecular junctions , 2006, Nature nanotechnology.

[106]  Yasuhisa Hasegawa,et al.  An active tactile sensor for detecting mechanical characteristics of contacted objects , 2006 .

[107]  Jonathan Engel,et al.  Strain sensitivity enhancement of thin metal film strain gauges on polymer microscale structures , 2006 .

[108]  Omkaram Nalamasu,et al.  Effects of compressive strains on electrical conductivities of a macroscale carbon nanotube block , 2007 .

[109]  Bill Gates,et al.  A robot in every home. , 2007 .

[110]  E. Thomas,et al.  Broad-wavelength-range chemically tunable block-copolymer photonic gels. , 2007, Nature materials.

[111]  Chih-Ming Chou,et al.  The effect of molecular conformation on single molecule conductance: measurements of pi-conjugated oligoaryls by STM break junction. , 2007, Chemical communications.

[112]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.