Process Intensification: Industrial Applications

The chapter presents process intensification technologies used in industrial applications, for increasing the eco-efficiency of the chemical equipment with the benefit of lower capital costs, substantial energy saving, reduced footprint, and safety by design. The key topics cover compact heat exchangers, static mixers, green chemical reactors (e.g., microreactors), high-gravity (HiGee) technology, cyclic distillation, dividing-wall column, and reactive distillation.

[1]  E. B. Nauman,et al.  Static Mixers in the Process Industries—A Review , 2003 .

[2]  Costin Sorin Bildea,et al.  Catalytic cyclic distillation – A novel process intensification approach in reactive separations , 2014 .

[3]  Jean-Marc Commenge,et al.  Methodological framework for choice of intensified equipment and development of innovative technologies , 2013 .

[4]  E. L. Paul,et al.  Handbook of Industrial Mixing: Science and Practice , 2003 .

[5]  Guang Q. Wang,et al.  Progress on Higee distillation—Introduction to a new device and its industrial applications , 2011 .

[6]  Helmut Jansen,et al.  Distillation Column Internals/Configurations for Process Intensification* , 2003 .

[7]  Anton A. Kiss,et al.  A systematic framework for the feasibility and technical evaluation of reactive distillation processes , 2012 .

[8]  D. P. Rao,et al.  Process Intensification in a HIGEE with Split Packing , 2006 .

[9]  Achim Kienle,et al.  Integrated chemical processes : synthesis, operation, analysis, and control , 2005 .

[10]  A. Górak,et al.  Scale-up of reactive distillation columns with catalytic packings , 2004 .

[11]  Eugeny Y. Kenig,et al.  Dividing wall columns in chemical process industry: A review on current activities , 2011 .

[12]  Alexandre C. Dimian,et al.  Integrated design and simulation of chemical processes , 2003 .

[13]  Rajamani Krishna,et al.  Modelling reactive distillation , 2000 .

[14]  Eugeny Y. Kenig,et al.  Modelling of reactive separation processes: reactive absorption and reactive distillation , 2003 .

[15]  G. Kaibel Distillation columns with vertical partitions , 1987 .

[16]  Rafiqul Gani,et al.  Phenomena Based Methodology for Process Synthesis Incorporating Process Intensification , 2013 .

[17]  Partha S. Goswami,et al.  Process Intensification in Rotating Packed Beds (HIGEE): An Appraisal , 2004 .

[18]  F. B. Petlyuk,et al.  Distillation Theory and Its Application to Optimal Design of Separation Units: Index , 2004 .

[19]  Costin Sorin Bildea,et al.  A control perspective on process intensification in dividing-wall columns , 2011 .

[20]  Jan Harmsen,et al.  Process intensification in the petrochemicals industry: Drivers and hurdles for commercial implementation , 2010 .

[21]  Anton A. Kiss,et al.  Advanced Distillation Technologies: Design, Control and Applications , 2013 .

[22]  William L. Luyben,et al.  Reactive Distillation Design and Control , 2008 .

[23]  Jeffrey J. Siirola,et al.  Industrial Applications of Chemical Process Synthesis , 1996 .

[24]  V. Agreda,et al.  High-purity methyl acetate via reactive distillation , 1990 .

[25]  B. Rong Synthesis of dividing-wall columns (DWC) for multicomponent distillations—A systematic approach , 2011 .

[26]  G. Kaibel,et al.  Dividing wall columns: Fundamentals and recent advances , 2010 .

[27]  G. J. Harmsen,et al.  Reactive distillation: The front-runner of industrial process intensification - A full review of commercial applications, research, scale-up, design and operation , 2007 .

[28]  K. Sundmacher,et al.  Towards a Methodology for the Systematic Analysis and Design of Efficient Chemical Processes - Part 1: From Unit Operations to Elementary Process Function- , 2008 .

[29]  Michael F. Malone,et al.  Reactive distillation for methyl acetate production , 2003, Comput. Chem. Eng..

[30]  K. Sundmacher,et al.  Reactive distillation : status and future directions , 2003 .

[31]  T. Wirth Microreactors in organic chemistry and catalysis , 2013 .

[32]  Ž. Olujić,et al.  A review on process intensification in internally heat-integrated distillation columns , 2014 .

[33]  Tom Van Gerven,et al.  Structure, energy, synergy, time - the fundamentals of Process Intensification , 2009 .

[34]  Wolfgang Ehrfeld,et al.  Microreactors: New Technology for Modern Chemistry , 2000 .

[35]  Ljubica Matijašević,et al.  Dividing wall column—A breakthrough towards sustainable distilling , 2010 .

[36]  W. Reschetilowski Microreactors in preparative chemistry : practical aspects in bioprocessing, nanotechnology, catalysis and more , 2013 .

[37]  Andrzej Stankiewicz,et al.  Re-Engineering the Chemical Processing Plant , 2003 .

[38]  A. Stankiewicz Reactive separations for process intensification: an industrial perspective , 2003 .

[39]  W.P.M. van Swaaij,et al.  Process intensification in the future production of base chemicals from biomass , 2012 .

[40]  Anton A. Kiss,et al.  Distillation technology - still young and full of breakthrough opportunities , 2014 .

[41]  R. Shah,et al.  Compact Heat Exchangers , 1990 .

[42]  Costas Tsouris,et al.  Process intensification - Has its time finally come? , 2003 .

[43]  Rajamani Krishna,et al.  Reactive Separations: More Ways to Skin a Cat , 2001 .

[44]  Sigurd Skogestad,et al.  Optimal operation of Kaibel distillation columns , 2011 .

[45]  Anton A. Kiss,et al.  Pilot-scale studies of process intensification by cyclic distillation , 2015 .

[46]  F. B. Petlyuk,et al.  Distillation Theory and Its Application to Optimal Design of Separation Units: Synthesis of Separation Flowsheets , 2004 .

[47]  Anton A. Kiss,et al.  Understanding process intensification in cyclic distillation systems , 2011 .