Vertical coupling between troposphere and lower ionosphere by electric currents and fields at equatorial latitudes

[1]  U. Inan,et al.  Latitudinal dependence of static mesospheric E fields above thunderstorms , 2015 .

[2]  V. Pasko,et al.  Dynamics of sprite streamers in varying air density , 2015 .

[3]  V. Pasko,et al.  Charge balance and ionospheric potential dynamics in time‐dependent global electric circuit model , 2014 .

[4]  V. Pasko,et al.  On the propagation of streamers in electrical discharges , 2014 .

[5]  Zhongwei Yan,et al.  A new estimate of the China temperature anomaly series and uncertainty assessment in 1900–2006 , 2014 .

[6]  H. Biernat,et al.  On electric field penetration from ground into the ionosphere , 2013 .

[7]  Michael J. Rycroft,et al.  Recent advances in global electric circuit coupling between the space environment and the troposphere , 2012 .

[8]  M. Rycroft,et al.  Electromagnetic Atmosphere-Plasma Coupling: The Global Atmospheric Electric Circuit , 2011, Space Science Reviews.

[9]  H. Biernat,et al.  Decrease of the electric field penetration into the ionosphere due to low conductivity at the near ground atmospheric layer , 2010 .

[10]  E. Williams,et al.  The global electrical circuit: A review , 2009 .

[11]  Michael J. Rycroft,et al.  An Overview of Earth’s Global Electric Circuit and Atmospheric Conductivity , 2008 .

[12]  M. Beharrell,et al.  A new method for deducing the effective collision frequency profile in the D-region , 2008 .

[13]  M. Rycroft,et al.  New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites , 2007 .

[14]  M. Rycroft,et al.  A possible explanation for the dominant effect of South American thunderstorms on the Carnegie curve , 2006 .

[15]  M. Rycroft,et al.  A quantitative model of the effect of global thunderstorms on the global distribution of ionospheric electrostatic potential , 2004 .

[16]  M. Taylor,et al.  Statistical analysis of space-time relationships between sprites and lightning , 2003 .

[17]  P. Velinov,et al.  Quasi-electrostatic fields in the near-earth space produced by lightning and generation of runaway electrons in ionosphere , 2003 .

[18]  P. Velinov,et al.  Electrostatic fields above thunderclouds at different latitudes and their ionospheric effects , 2002 .

[19]  Michael J. Rycroft,et al.  The global atmospheric electric circuit, solar activity and climate change , 2000 .

[20]  T. Bell,et al.  Ionospheric effects due to electrostatic thundercloud fields , 1998 .

[21]  Walter A. Lyons,et al.  Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems , 1996 .

[22]  D. Hampton,et al.  Preliminary results from the Sprites94 aircraft campaign: 1 , 1995 .

[23]  P. Velinov,et al.  Modelling the penetration of thundercloud electric fields into the ionosphere , 1995 .

[24]  R. Nemzek,et al.  Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System , 1990, Science.

[25]  M. Kelley,et al.  Electrical measurements in the atmosphere and the ionosphere over an active thunderstorm: 2. Direct current electric fields and conductivity , 1985 .

[26]  R. Roble,et al.  The interaction of a dipolar thunderstorm with its global electrical environment , 1985 .

[27]  C. Sechrist Comparisons of techniques for measurement of D‐region electron densities , 1974 .

[28]  M. Rycroft INTRODUCTION TO THE PHYSICS OF SPRITES, ELVES AND INTENSE LIGHTNING DISCHARGES , 2006 .

[29]  C. Price GLOBAL THUNDERSTORM ACTIVITY , 2006 .

[30]  M. Rycroft,et al.  On the effect of near-equatorial thunderstorms on the global distribution of ionospheric potential , 2005 .

[31]  Michael C. Kelley,et al.  The Earth's Ionosphere : Plasma Physics and Electrodynamics , 1989 .

[32]  Henry Rishbeth,et al.  Introduction to ionospheric physics , 1969 .

[33]  Charles Thomson Rees Wilson,et al.  Investigations on Lightning Discharges and on the Electric Field of Thunderstorms , 1921 .