Numerical Integration Over Implicitly Defined Domains with Topological Guarantee

AbstractNumerical integration over the implicitly defined domains is challenging due to topological variances of implicit functions. In this paper, we use interval arithmetic to identify the boundary of the integration domain exactly, thus getting the correct topology of the domain. Furthermore, a geometry-based local error estimate is explored to guide the hierarchical subdivision and save the computation cost. Numerical experiments are presented to demonstrate the accuracy and the potential of the proposed method.

[1]  Ernst Rank,et al.  Geometric modeling, isogeometric analysis and the finite cell method , 2012 .

[2]  Ralph R. Martin,et al.  Comparison of interval methods for plotting algebraic curves , 2002, Comput. Aided Geom. Des..

[3]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[4]  Klaus Höllig,et al.  Programming finite element methods with weighted B-splines , 2015, Comput. Math. Appl..

[5]  Vadim Shapiro,et al.  The Architecture of SAGE – A Meshfree System Based on RFM , 2002, Engineering with Computers.

[6]  D. P. Mitchell Robust ray intersection with interval arithmetic , 1990 .

[7]  Michael A. Wolfe,et al.  Interval enclosures for a certain class of multiple integrals , 1998, Appl. Math. Comput..

[8]  L. B. Rall,et al.  Integration of Interval Functions , 1981 .

[9]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[10]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[11]  Irina Voiculescu,et al.  Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms , 2009 .

[12]  Vadim Shapiro,et al.  Shape Aware Quadratures , 2018, J. Comput. Phys..

[13]  F. Kummer,et al.  Highly accurate surface and volume integration on implicit domains by means of moment‐fitting , 2013 .

[14]  Ted Belytschko,et al.  Numerical integration of the Galerkin weak form in meshfree methods , 1999 .

[15]  Vibeke Skytt,et al.  Trivariate spline representations for computer aided design and additive manufacturing , 2018, Comput. Math. Appl..

[16]  Victor M. Calo,et al.  Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis , 2016, Comput. Aided Des..

[17]  Sotirios E. Notaris Gauss-Kronrod quadrature formulae for weight functions of Bernstein-Szego¨ type, II , 1990 .

[18]  Timon Rabczuk,et al.  An improved isogeometric analysis method for trimmed geometries , 2017, ArXiv.

[19]  Ramon E. Moore Reliability in computing: the role of interval methods in scientific computing , 1988 .

[20]  Maxim Olshanskii,et al.  Numerical integration over implicitly defined domains for higher order unfitted finite element methods , 2016, 1601.06182.

[21]  V. Shapiro,et al.  Adaptively Weighted Numerical Integration in the Finite Cell Method , 2016 .

[22]  Ganesh Subbarayan,et al.  Signed algebraic level sets on NURBS surfaces and implicit Boolean compositions for isogeometric CAD-CAE integration , 2017, Comput. Aided Des..

[23]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[24]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[25]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[26]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[27]  Vadim Shapiro,et al.  Adaptively weighted numerical integration over arbitrary domains , 2014, Comput. Math. Appl..

[28]  A. N. Shevchenko,et al.  Numerical integration software for projection and projection-grid methods , 1994 .

[29]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[30]  Pieter J. Barendrecht,et al.  Efficient quadrature rules for subdivision surfaces in isogeometric analysis , 2018, Computer Methods in Applied Mechanics and Engineering.

[31]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[32]  Ronald Fedkiw,et al.  The immersed interface method. Numerical solutions of PDEs involving interfaces and irregular domains , 2007, Math. Comput..

[33]  Ralph R. Martin,et al.  Modified Affine Arithmetic Is More Accurate than Centered Interval Arithmetic or Affine Arithmetic , 2003, IMA Conference on the Mathematics of Surfaces.

[34]  Terje O. Espelid,et al.  An adaptive algorithm for the approximate calculation of multiple integrals , 1991, TOMS.

[35]  Thomas-Peter Fries,et al.  Higher‐order XFEM for curved strong and weak discontinuities , 2009 .

[36]  Jon G. Rokne,et al.  Interval Arithmetic , 1992, Graphics Gems III.

[37]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[38]  R. I. Saye,et al.  High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles , 2015, SIAM J. Sci. Comput..

[39]  Zhilin Li,et al.  The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics) , 2006 .

[40]  B. Engquist,et al.  Numerical approximations of singular source terms in differential equations , 2004 .

[41]  K. Höllig Finite element methods with B-splines , 1987 .

[42]  Abbas Edalat,et al.  Numerical Integration with Exact Real Arithmetic , 1999, ICALP.

[43]  Kersten Schmidt,et al.  A High Order Method for the Approximation of Integrals Over Implicitly Defined Hypersurfaces , 2017, SIAM J. Numer. Anal..

[44]  Charlie C. L. Wang,et al.  Isogeometric computation reuse method for complex objects with topology-consistent volumetric parameterization , 2016, Comput. Aided Des..

[45]  Charlie C. L. Wang,et al.  Intersection-Free and Topologically Faithful Slicing of Implicit Solid , 2013, J. Comput. Inf. Sci. Eng..