Robust output Nash strategies based on sliding mode observation in a two-player differential game

This paper tackles the problem of a two-player differential game affected by matched uncertainties with only the output measurement available for each player. We suggest a state estimation based on the so-called algebraic hierarchical observer for each player in order to design the Nash equilibrium strategies based on such estimation. At the same time, the use of an output integral sliding mode term (also based on the estimation processes) for the Nash strategies robustification for both players ensures the compensation of the matched uncertainties. A simulation example shows the feasibility of this approach in a magnetic levitator problem.

[1]  Marwan A. Simaan,et al.  Stochastic Discrete-Time Nash Games with Constrained State Estimators , 2002 .

[2]  John S. Baras,et al.  Partially Observed Differential Games, Infinite Dimensional HJI Equations, and Nonlinear HControl , 1994 .

[3]  Alexander S. Poznyak,et al.  Output integral sliding mode control based on algebraic hierarchical observer , 2007, Int. J. Control.

[4]  A. Weeren,et al.  Asymptotic Analysis of Linear Feedback Nash Equilibria in Nonzero-Sum Linear-Quadratic Differential Games , 1999 .

[5]  Alexander S. Poznyak,et al.  Quasi-equilibrium in LQ differential games with bounded uncertain disturbances: robust and adaptive strategies with pre-identification via sliding mode technique , 2007, Int. J. Syst. Sci..

[6]  J. Cruz,et al.  Well-Posedness of Singularly Pertubed Nash Games , 1978 .

[7]  H. Abou-Kandil,et al.  Matrix Riccati Equations in Control and Systems Theory , 2003, IEEE Transactions on Automatic Control.

[8]  Massimiliano Mattei,et al.  Guaranteeing cost strategies for linear quadratic differential games under uncertain dynamic , 1997, 1997 European Control Conference (ECC).

[9]  Tamer Başar,et al.  H1-Optimal Control and Related Minimax Design Problems , 1995 .

[10]  F. Lamnabhi-Lagarrigue,et al.  Sliding observer-controller design for uncertain triangular nonlinear systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[11]  Pu-yan Nie,et al.  Dynamic Stackelberg games under open-loop complete information , 2005, J. Frankl. Inst..

[12]  Yau-Tarng Juang,et al.  Decoupled integral variable structure control for MIMO systems , 2007, J. Frankl. Inst..

[13]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[14]  Fahmida N. Chowdhury,et al.  Robust adaptive sliding mode controller for triaxial gyroscope , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[15]  Leonid M. Fridman,et al.  Optimal and robust control for linear state-delay systems , 2007, Journal of the Franklin Institute.

[16]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[17]  Alexander S. Poznyak,et al.  Output Integral Sliding Mode for Min-Max Optimization of Multi-Plant Linear Uncertain Systems , 2009, IEEE Transactions on Automatic Control.

[18]  Edson Roberto De Pieri,et al.  NASH STRATEGY APPLIED TO ACTIVE MAGNETIC BEARING CONTROL , 2005 .

[19]  Sergey V. Drakunov,et al.  Leader-follower strategy via a sliding mode approach , 1996 .

[20]  Jacob Engwerda,et al.  LQ Dynamic Optimization and Differential Games , 2005 .

[21]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[22]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[23]  D. Luenberger,et al.  Stochastic differential games with constrained state estimators , 1969 .

[24]  Ismet Sahin,et al.  A flow and routing control policy for communication networks with multiple competitive users , 2006, J. Frankl. Inst..

[25]  A. Pironti,et al.  Robust strategies for Nash linear quadratic games under uncertain dynamics , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[26]  Yury Orlov Sliding Mode Observer-Based Synthesis of State Derivative-Free Model Reference Adaptive Control of Distributed Parameter Systems , 2000 .

[27]  Christos Douligeris,et al.  A game theoretic perspective to flow control in telecommunication networks , 1992 .

[28]  J. Schumacher,et al.  Robust Equilibria in Indefinite Linear-Quadratic Differential Games , 2003 .

[29]  D. Luenberger,et al.  Differential games with imperfect state information , 1969 .

[30]  Tsung-Chin Lin,et al.  STABLE INDIRECT ADAPTIVE TYPE-2 FUZZY SLIDING MODE CONTROL USING LYAPUNOV APPROACH , 2010 .

[31]  Barbara Zitov a Journal of the Franklin Institute , 1942, Nature.

[32]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[33]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[34]  L. Fridman,et al.  Robust Nash Strategies based on Integral Sliding Mode Control for a Two Players Uncertain LQ Game , 2007, Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007).

[35]  Mohamed Djemai,et al.  Sliding Mode Observers , 2002 .

[36]  Alexander S. Poznyak,et al.  Robust Nash Equilibrium in multi‐model LQ differential games: analysis and extraproximal numerical procedure , 2007 .

[37]  T.-Y. Li,et al.  Lyapunov Iterations for Solving Coupled Algebraic Riccati Equations of Nash Differential Games and Algebraic Riccati Equations of Zero-Sum Games , 1995 .

[38]  Rafael Bárcena,et al.  Adaptive control of printing devices using fractional-order hold circuits adjusted through neural networks , 2007, J. Frankl. Inst..

[39]  A. Pironti,et al.  Guaranteeing cost strategies for linear quadratic differential games under uncertain dynamic , 1997 .