Parallel TBox Classification in Description Logics - First Experimental Results

One of the most frequently used inference services of description logic reasoners classifies all named classes of OWL ontologies into a subsumption hierarchy. Due to emerging OWL ontologies from the web community consisting of up to hundreds of thousand of named classes and the increasing availability of multi-processor and multi-or many-core computers, we extend our work on parallel TBox classification and propose a new algorithm that is sound and complete and demonstrates in a first experimental evaluation a low overhead w.r.t. subsumption tests (less than 3%) if compared with sequential classification.

[1]  Jaswinder Pal Singh,et al.  Parallel tree building on a range of shared address space multiprocessors: algorithms and application performance , 1998, Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing.

[2]  Boris Motik,et al.  Exploiting Partial Information in Taxonomy Construction , 2009, Description Logics.

[3]  Ian Horrocks,et al.  A Logical Framework for Modularity of Ontologies , 2007, IJCAI.

[4]  Bernhard Nebel,et al.  An Empirical Analysis of Optimization Techniques for Terminological Representation Systems, or Making KRIS Get a Move On , 1992, KR.

[5]  Sheila A. McIlraith,et al.  Partition-Based Logical Reasoning , 2000, KR.

[6]  Volker Haarslev,et al.  Exploiting Pseudo Models for TBox and ABox Reasoning in Expressive Description Logics , 2001, IJCAR.

[7]  Volker Haarslev,et al.  Towards Parallel Classifcation of TBoxes , 2008, Description Logics.

[8]  Volker Haarslev,et al.  High Performance Reasoning with Very Large Knowledge Bases: A Practical Case Study , 2001, IJCAI.

[9]  Thorsten Liebig,et al.  Parallelizing Tableaux-Based Description Logic Reasoning , 2007, OTM Workshops.

[10]  Joachim Quantz,et al.  Parallelizing Description Logics , 1995, KI.

[11]  Frank van Harmelen,et al.  Scalable Distributed Reasoning Using MapReduce , 2009, SEMWEB.

[12]  Volker Haarslev,et al.  On the Scalability of Description Logic Instance Retrieval , 2006, KI.

[13]  Heiner Stuckenschmidt,et al.  Distributed Resolution for Expressive Ontology Networks , 2009, RR.

[14]  Edith Schonberg,et al.  The Summary Abox: Cutting Ontologies Down to Size , 2006, SEMWEB.

[15]  Edith Schonberg,et al.  Scalable Semantic Retrieval through Summarization and Refinement , 2007, AAAI.

[16]  Bernardo Cuenca Grau,et al.  History Matters: Incremental Ontology Reasoning Using Modules , 2007, ISWC/ASWC.

[17]  J. Heflin,et al.  A Scalable Approach for Partitioning OWL Knowledge Bases , 2006 .