Using a fast multipole method to accelerate spline evaluations
暂无分享,去创建一个
[1] V. Rokhlin. Rapid solution of integral equations of classical potential theory , 1985 .
[2] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[3] Vladimir Rokhlin,et al. A Fast Algorithm for the Numerical Evaluation of Conformal Mappings , 1989 .
[4] Feng Zhao,et al. The Parallel Multipole Method on the Connection Machine , 1991, SIAM J. Sci. Comput..
[5] A. Brandt. Multilevel computations of integral transforms and particle interactions with oscillatory kernels , 1991 .
[6] L. Amodei,et al. A Vector Spline Approximation With Application to Meteorology , 1991, Curves and Surfaces.
[7] R. Beatson,et al. Fast evaluation of radial basis functions: I , 1992 .
[8] Christopher R. Anderson,et al. An Implementation of the Fast Multipole Method without Multipoles , 1992, SIAM J. Sci. Comput..
[9] J. Boyd. Multipole expansions and pseudospectral cardinal functions: A new generalization of the fast fourier transform , 1992 .
[10] Frank Thomson Leighton,et al. Preconditioned, Adaptive, Multipole-Accelerated Iterative Methods for Three-Dimensional First-Kind Integral Equations of Potential Theory , 1994, SIAM J. Sci. Comput..
[11] Fast Evaluation of Splines Using Poisson Formula , 1994 .
[12] C. Leonard Berman. Grid-Multipole Calculations , 1995, SIAM J. Sci. Comput..
[13] John A. Board,et al. Fast Fourier Transform Accelerated Fast Multipole Algorithm , 1996, SIAM J. Sci. Comput..
[14] R. Beatson,et al. Fast evaluation of radial basis functions : methods for two-dimensional polyharmonic splines , 1997 .
[15] David Suter,et al. Fast evaluation of vector splines in two dimensions , 1997 .
[16] Richard K. Beatson,et al. Fast Evaluation of Radial Basis Functions: Moment-Based Methods , 1998, SIAM J. Sci. Comput..