In-Motion Iterative Fine Alignment Algorithm for On-Board Vehicular Odometer-Aided SINS

This research proposes a novel in-motion fine alignment algorithm for vehicular dead reckoning (DR) with odometer-aided strapdown inertial navigation system (SINS) while the map matching result is used for a group of landmark points to estimate misalignment angles. The proposed algorithm is designed based on principle of similarity, that is, trajectory of DR is similar to the true trajectory that the main difference between these two trajectories is rotation and scale. Further, the results from map matching are introduced as a group of landmark points to estimate the residual of azimuth error angle after coarse alignment and the scale factor error of the odometer. It is theoretically proved that the alignment effectiveness based on the results from map matching is equivalent to that on single zero error landmark point. Finally, digital simulations are conducted to verify the presented algorithm and test the performance.