Trace and Künneth formulas for singularity categories and applications

We present an $\ell$-adic trace formula for saturated and admissible dg-categories over a base monoidal differential graded (dg)-category. Moreover, we prove Künneth formulas for dg-category of singularities and for inertia-invariant vanishing cycles. As an application, we prove a categorical version of Bloch's conductor conjecture (originally stated by Spencer Bloch in 1985), under the additional hypothesis that the monodromy action of the inertia group is unipotent.

[1]  Model Categories,et al.  Model Categories , 2020, Foundations of Stable Homotopy Theory.

[2]  J. Lurie,et al.  Weil's Conjecture for Function Fields , 2019 .

[3]  G. Vezzosi,et al.  Géomérie non-commutative, formule des traces et conducteur de Bloch , 2017, 1701.00455.

[4]  Takeshi Saito Characteristic cycles and the conductor of direct image , 2017, 1704.04832.

[5]  S. Pauli A1-homotopy theory , 2017 .

[6]  L. Illusie Around the Thom–Sebastiani theorem, with an appendix by Weizhe Zheng , 2017 .

[7]  A. Dubouloz,et al.  A1-homotopy theory , 2017 .

[8]  B. Toën,et al.  Motivic Realizations of Singularity Categories and Vanishing Cycles , 2016, 1607.03012.

[9]  Bertrand Toën,et al.  Caractères de Chern, traces équivariantes et géométrie algébrique dérivée , 2015 .

[10]  M. Robalo K-theory and the bridge from motives to noncommutative motives , 2015 .

[11]  A. Blanc Topological K-theory of complex noncommutative spaces , 2012, Compositio Mathematica.

[12]  R. Haugseng The higher Morita category of n–algebras , 2014, 1412.8459.

[13]  L. Illusie,et al.  Travaux de Gabber sur l'uniformisation locale et la cohomologie étale des schémas quasi-excellents. Séminaire à l'École polytechnique 2006-2008 , 2012, 1207.3648.

[14]  Anatoly Preygel Thom-Sebastiani & Duality for Matrix Factorizations , 2011, 1101.5834.

[15]  Toën Bertrand,et al.  Lectures on DG-Categories , 2011 .

[16]  Rubén J. Sánchez-García,et al.  Topics in Algebraic and Topological K-Theory , 2010 .

[17]  B. Toën Derived Azumaya algebras and generators for twisted derived categories , 2010 .

[18]  Jacob Lurie,et al.  Higher Topos Theory (AM-170) , 2009 .

[19]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[20]  Jacob Lurie,et al.  On the Classification of Topological Field Theories , 2009, 0905.0465.

[21]  B. Toën,et al.  Moduli of objects in dg-categories , 2005, math/0503269.

[22]  Kazuya Kato,et al.  On the conductor formula of Bloch , 2004 .

[23]  B. Toën The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.

[24]  F. Orgogozo,et al.  Conjecture de Bloch et nombres de Milnor , 2002, math/0210046.

[25]  N. Strickland,et al.  MODEL CATEGORIES (Mathematical Surveys and Monographs 63) , 2000 .

[26]  J. Neukirch Algebraic Number Theory , 1999 .

[27]  Igor Kriz,et al.  p-adic homotopy theory , 1993 .

[28]  M. Kapranov On DG-modules over the de rham complex and the vanishing cycles functor , 1991 .

[29]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[30]  P. Deligne,et al.  Groupes de monodromie en geometrie algebrique , 1972 .

[31]  L. Hesselholt,et al.  Higher Algebra , 1937, Nature.