Plasmon excitation modes in nanowire arrays

Electron energy loss spectrometry and energy-filtered transmission electron microscopy reveal characteristic plasmon excitations in both isolated Bi nanowires and an array of Bi nanowires within an Al2O3 matrix. As the average nanowire diameter decreases from 90 to 35 nm, both the volume plasmon energy and peak width increase. In addition, a lower-energy excitation is present in a very localized region at the Bi–Al2O3 interface. These results are discussed in the context of quantum confinement and the influence of interfaces on the electronic properties of nanocomposite materials.

[1]  M. Dresselhaus,et al.  Intersubband transitions in bismuth nanowires , 2000 .

[2]  Yu-Ming Lin,et al.  Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires , 2000 .

[3]  M. Dresselhaus,et al.  Electronic transport properties of single-crystal bismuth nanowire arrays , 2000 .

[4]  J. Silcox,et al.  Fabrication and STEM/EELS measurements of nanometer-scale silicon tips and filaments , 1999 .

[5]  J. Ying,et al.  Processing and Characterization of Single-Crystalline Ultrafine Bismuth Nanowires , 1999 .

[6]  P. Nakashima,et al.  Particle size dependence of the volume plasmon energy in cadmium sulphide quantum dots by electron energy loss spectroscopy , 1999 .

[7]  M. Dresselhaus,et al.  Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays , 1998 .

[8]  Jackie Y. Ying,et al.  Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process , 1998 .

[9]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[10]  P. Stadelmann,et al.  Low-loss EELS study of oxide-covered aluminum nanospheres , 1997 .

[11]  R. Egerton,et al.  Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[12]  Z. Wang,et al.  Energy-filtering and composition-sensitive imaging in surface and interface studies using HREM , 1995 .

[13]  M. Turowski,et al.  Semiclassical model for the inelastic scattering probability of electrons traveling parallel to four dielectric layers , 1994 .

[14]  H. Fukuda,et al.  Characterization of SiO2/Si(100) interface structure of ultrathin SiO2 films using spatially resolved electron energy loss spectroscopy , 1992 .

[15]  M. Mitome,et al.  Size dependence of plasmon energy in Si clusters , 1992 .

[16]  Ugarte,et al.  Surface- and interface-plasmon modes on small semiconducting spheres. , 1992, Physical review. B, Condensed matter.

[17]  Fink,et al.  Quantum size effects in excitations of potassium clusters. , 1988, Physical review letters.

[18]  Munnix,et al.  Surface-plasmon excitation on oxide-covered spherical particles. , 1985, Physical review. B, Condensed matter.

[19]  Ekardt Size-dependent photoabsorption and photoemission of small metal particles. , 1985, Physical review. B, Condensed matter.

[20]  Heinz Raether,et al.  BOOKS: Pattern Recognition in Practice: Proceedings, International Workshop, Amsterdam, 21-23 May 1980; Optical Fiber Systems and Their Components: An Introduction; Excitation of Plasmons and Interband Transitions by Electrons. , 1980, Applied optics.

[21]  B. Gauthé,et al.  Electron energy loss spectra and optical constants of Bismuth , 1974 .

[22]  M. Kakihana,et al.  Materials Research Society Symposium - Proceedings , 2000 .