Integrins in mechanotransduction.

[1]  Enrico Gratton,et al.  Fluid Shear Stress on Endothelial Cells Modulates Mechanical Tension across VE-Cadherin and PECAM-1 , 2013, Current Biology.

[2]  Andrés J. García,et al.  Cyclic mechanical reinforcement of integrin-ligand interactions. , 2013, Molecular cell.

[3]  K. Burridge,et al.  The tension mounts: Stress fibers as force-generating mechanotransducers , 2013, The Journal of cell biology.

[4]  Sergey V. Plotnikov,et al.  Force Fluctuations within Focal Adhesions Mediate ECM-Rigidity Sensing to Guide Directed Cell Migration , 2012, Cell.

[5]  Yong Ho Bae,et al.  Cardiovascular protection by ApoE and ApoE-HDL linked to suppression of ECM gene expression and arterial stiffening. , 2012, Cell reports.

[6]  L. M. Chapin,et al.  Lateral communication between stress fiber sarcomeres facilitates a local remodeling response. , 2012, Biophysical journal.

[7]  Matthias Rief,et al.  Dynamic force sensing of filamin revealed in single-molecule experiments , 2012, Proceedings of the National Academy of Sciences.

[8]  E. Evans,et al.  Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells , 2012, The Journal of cell biology.

[9]  Beth L. Pruitt,et al.  E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch , 2012, Proceedings of the National Academy of Sciences.

[10]  J. Shalhoub,et al.  The Effect of Pressure-Induced Mechanical Stretch on Vascular Wall Differential Gene Expression , 2012, Journal of Vascular Research.

[11]  Masaaki Yoshigi,et al.  Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators , 2012, Molecular biology of the cell.

[12]  G. Breier,et al.  Mechanoinduction of lymph vessel expansion , 2012, The EMBO journal.

[13]  R. Adams,et al.  Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. , 2012, Developmental cell.

[14]  Gregory F Weber,et al.  Mechanical stress-activated integrin α5β1 induces opening of connexin 43 hemichannels , 2012, Proceedings of the National Academy of Sciences.

[15]  Hanry Yu,et al.  Mechanotransduction In Vivo by Repeated Talin Stretch-Relaxation Events Depends upon Vinculin , 2011, PLoS biology.

[16]  Z. Kam,et al.  Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing , 2011, Nature Cell Biology.

[17]  T. Okano,et al.  Hippo pathway regulation by cell morphology and stress fibers , 2011, Development.

[18]  D. Weitz,et al.  Mechanical strain in actin networks regulates FilGAP and integrin binding to Filamin A , 2011, Nature.

[19]  Brenton D. Hoffman,et al.  Dynamic molecular processes mediate cellular mechanotransduction , 2011, Nature.

[20]  Nicola Elvassore,et al.  Role of YAP/TAZ in mechanotransduction , 2011, Nature.

[21]  Matthew J. Paszek,et al.  Balancing forces: architectural control of mechanotransduction , 2011, Nature Reviews Molecular Cell Biology.

[22]  Richard Superfine,et al.  The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins , 2011, Nature Cell Biology.

[23]  Frederick Sachs,et al.  Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor , 2011, Journal of Cell Science.

[24]  G. Boss,et al.  Cyclic GMP and Protein Kinase G Control a Src-Containing Mechanosome in Osteoblasts , 2010, Science Signaling.

[25]  Clare M Waterman,et al.  Mechanical integration of actin and adhesion dynamics in cell migration. , 2010, Annual review of cell and developmental biology.

[26]  Manuela Schmidt,et al.  Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels , 2010, Science.

[27]  A. Kho,et al.  Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression , 2010, The Journal of cell biology.

[28]  Pere Roca-Cusachs,et al.  Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. , 2010, Developmental cell.

[29]  Taekjip Ha,et al.  Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics , 2010, Nature.

[30]  B. Gelfand,et al.  Atheroprone Hemodynamics Regulate Fibronectin Deposition to Create Positive Feedback That Sustains Endothelial Inflammation , 2010, Circulation research.

[31]  D. Tschumperlin,et al.  Recent advances and new opportunities in lung mechanobiology. , 2010, Journal of biomechanics.

[32]  C. Haslett,et al.  Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic reticulum , 2010, Journal of Cell Science.

[33]  B. Blackman,et al.  Complex Regulation and Function of the Inflammatory Smooth Muscle Cell Phenotype in Atherosclerosis , 2009, Journal of Vascular Research.

[34]  D. Ingber,et al.  TRPV4 Channels Mediate Cyclic Strain–Induced Endothelial Cell Reorientation Through Integrin-to-Integrin Signaling , 2009, Circulation research.

[35]  C. McCulloch,et al.  The role of FilGAP-filamin A interactions in mechanoprotection. , 2009, Molecular biology of the cell.

[36]  Valerie M. Weaver,et al.  A tense situation: forcing tumour progression , 2009, Nature Reviews Cancer.

[37]  Michael P. Sheetz,et al.  Stretching Single Talin Rod Molecules Activates Vinculin Binding , 2009, Science.

[38]  David J Odde,et al.  Traction Dynamics of Filopodia on Compliant Substrates , 2008, Science.

[39]  Frederick Sachs,et al.  A fluorescence energy transfer‐based mechanical stress sensor for specific proteins in situ , 2008, The FEBS journal.

[40]  H. Hamada,et al.  Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch , 2007, Nature.

[41]  Scott E Fraser,et al.  Vascular remodeling of the mouse yolk sac requires hemodynamic force , 2007, Development.

[42]  Paul Matsudaira,et al.  Detecting force-induced molecular transitions with fluorescence resonant energy transfer. , 2007, Angewandte Chemie.

[43]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[44]  J. H. Wang,et al.  An Introductory Review of Cell Mechanobiology , 2006, Biomechanics and modeling in mechanobiology.

[45]  T. Naoe,et al.  Integrin Activation and Matrix Binding Mediate Cellular Responses to Mechanical Stretch* , 2005, Journal of Biological Chemistry.

[46]  M. Schwartz,et al.  Integrins in Mechanotransduction* , 2004, Journal of Biological Chemistry.

[47]  M. Sheetz,et al.  Periodic Lamellipodial Contractions Correlate with Rearward Actin Waves , 2004, Cell.

[48]  G. Schultz,et al.  Ca2+-dependent Potentiation of the Nonselective Cation Channel TRPV4 Is Mediated by a C-terminal Calmodulin Binding Site* , 2003, Journal of Biological Chemistry.

[49]  Shu Chien,et al.  Effects of cell tension on the small GTPase Rac , 2002, The Journal of cell biology.

[50]  Jennifer L. West,et al.  Synthetic Materials in the Study of Cell Response to Substrate Rigidity , 2009, Annals of Biomedical Engineering.

[51]  Jan Lammerding,et al.  Mechanotransduction gone awry , 2009, Nature Reviews Molecular Cell Biology.

[52]  B. Geiger,et al.  Environmental sensing through focal adhesions , 2009, Nature Reviews Molecular Cell Biology.