The Boltzmann-Hamel equations for optimal control
暂无分享,去创建一个
[1] A. G. Greenhill. Analytical Mechanics , 1890, Nature.
[2] Anthony M. Bloch,et al. Reduction of Euler Lagrange problems for constrained variational problems and relation with optimal control problems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[3] J. L. Synge,et al. Geodesics in non-holonomic geometry , 1928 .
[4] Marco Favretti,et al. On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints , 1996 .
[5] A. D. Lewis,et al. Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.
[6] P. Crouch,et al. On the geometry of Riemannian cubic polynomials , 2001 .
[7] L. Noakes. Null cubics and Lie quadratics , 2003 .
[8] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[9] Lyle Noakes,et al. Cubic Splines on Curved Spaces , 1989 .
[10] Lyle Noakes,et al. Non-null Lie quadratics in E3 , 2004 .
[11] R. Brockett. Control Theory and Singular Riemannian Geometry , 1982 .
[12] D. T. Greenwood,et al. Advanced Dynamics: Frontmatter , 2003 .
[13] P. Crouch,et al. The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .
[14] Jair Koiller,et al. Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization , 2005 .
[15] I. Neĭmark,et al. Dynamics of Nonholonomic Systems , 1972 .
[16] K. Lynch. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[17] Marco Favretti,et al. Equivalence of Dynamics for Nonholonomic Systems with Transverse Constraints , 1998 .