The Boltzmann-Hamel equations for optimal control

We introduce a fourth order version of the Boltzmann-Hamel equations, which yields a reduced set of equations for the kinematic and dynamic optimal control problems for mechanical systems with nonholonomic constraints. In particular, we will show the dynamic optimal control problem can be written as a minimal set of 4n - 2m first order differential equations of motion.

[1]  A. G. Greenhill Analytical Mechanics , 1890, Nature.

[2]  Anthony M. Bloch,et al.  Reduction of Euler Lagrange problems for constrained variational problems and relation with optimal control problems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[3]  J. L. Synge,et al.  Geodesics in non-holonomic geometry , 1928 .

[4]  Marco Favretti,et al.  On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints , 1996 .

[5]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[6]  P. Crouch,et al.  On the geometry of Riemannian cubic polynomials , 2001 .

[7]  L. Noakes Null cubics and Lie quadratics , 2003 .

[8]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[9]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[10]  Lyle Noakes,et al.  Non-null Lie quadratics in E3 , 2004 .

[11]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[12]  D. T. Greenwood,et al.  Advanced Dynamics: Frontmatter , 2003 .

[13]  P. Crouch,et al.  The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .

[14]  Jair Koiller,et al.  Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization , 2005 .

[15]  I. Neĭmark,et al.  Dynamics of Nonholonomic Systems , 1972 .

[16]  K. Lynch Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[17]  Marco Favretti,et al.  Equivalence of Dynamics for Nonholonomic Systems with Transverse Constraints , 1998 .