Improved method for retinotopy constrained source estimation of visual‐evoked responses

Retinotopy constrained source estimation (RCSE) is a method for noninvasively measuring the time courses of activation in early visual areas using magnetoencephalography (MEG) or electroencephalography (EEG). Unlike conventional equivalent current dipole or distributed source models, the use of multiple, retinotopically mapped stimulus locations to simultaneously constrain the solutions allows for the estimation of independent waveforms for visual areas V1, V2, and V3, despite their close proximity to each other. We describe modifications that improve the reliability and efficiency of this method. First, we find that increasing the number and size of visual stimuli results in source estimates that are less susceptible to noise. Second, to create a more accurate forward solution, we have explicitly modeled the cortical point spread of individual visual stimuli. Dipoles are represented as extended patches on the cortical surface, which take into account the estimated receptive field size at each location in V1, V2, and V3 as well as the contributions from contralateral, ipsilateral, dorsal, and ventral portions of the visual areas. Third, we implemented a map fitting procedure to deform a template to match individual subject retinotopic maps derived from functional magnetic resonance imaging (fMRI). This improves the efficiency of the overall method by allowing automated dipole selection, and it makes the results less sensitive to physiological noise in fMRI retinotopy data. Finally, the iteratively reweighted least squares (IRLS) method was used to reduce the contribution from stimulus locations with high residual error for robust estimation of visual evoked responses. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.

[1]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[2]  Masa-aki Sato,et al.  Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals , 2008, NeuroImage.

[3]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[4]  F. Previc Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications , 1990, Behavioral and Brain Sciences.

[5]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[6]  S Zeki,et al.  Improbable areas in the visual brain , 2003, Trends in Neurosciences.

[7]  A. van Oosterom,et al.  Source parameter estimation in inhomogeneous volume conductors of arbitrary shape , 1989, IEEE Transactions on Biomedical Engineering.

[8]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[9]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[10]  Chantal Delon-Martin,et al.  Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis , 2004, NeuroImage.

[11]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[12]  Thom Carney,et al.  Using multi-stimulus VEP source localization to obtain a retinotopic map of human primary visual cortex , 1999, Clinical Neurophysiology.

[13]  D. Lehmann,et al.  Multichannel evoked potential fields show different properties of human upper and lower hemiretina systems , 1979, Experimental Brain Research.

[14]  R. Hari,et al.  Stronger occipital cortical activation to lower than upper visual field stimuli Neuromagnetic recordings , 1999, Experimental Brain Research.

[15]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[16]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[17]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[18]  Martin I Sereno,et al.  Brain mapping in animals and humans , 1998, Current Opinion in Neurobiology.

[19]  Sabine Kastner,et al.  Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks. , 2007, Journal of neurophysiology.

[20]  R. Bowtell,et al.  Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method , 2004, Journal of magnetic resonance imaging : JMRI.

[21]  Anders M. Dale,et al.  Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data , 2006, NeuroImage.

[22]  Justin L. Gardner Contrast adaptation and representation in human early visual cortex , 2006 .

[23]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  I F Gorodnitsky,et al.  Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.

[25]  Andreas A. Ioannides,et al.  Consistent and precise localization of brain activity in human primary visual cortex by MEG and fMRI , 2003, NeuroImage.

[26]  S. Zeki Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. , 1978, The Journal of physiology.

[27]  Bruce Fischl,et al.  Geometrically Accurate Topology-Correction of Cortical Surfaces Using Nonseparating Loops , 2007, IEEE Transactions on Medical Imaging.

[28]  R J Ilmoniemi,et al.  Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. , 1999, Journal of neurophysiology.

[29]  W. Skrandies The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences , 1987 .

[30]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[31]  Isabelle Bloch,et al.  Distortion correction and robust tensor estimation for MR diffusion imaging , 2002, Medical Image Anal..

[32]  E. Halgren,et al.  Source estimates for MEG/EEG visual evoked responses constrained by multiple, retinotopically‐mapped stimulus locations , 2009, Human brain mapping.

[33]  Jouko Lampinen,et al.  Automatic fMRI‐guided MEG multidipole localization for visual responses , 2009, Human brain mapping.

[34]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[35]  Matthew C. Keller,et al.  Increased sensitivity in neuroimaging analyses using robust regression , 2005, NeuroImage.

[36]  Steven A. Hillyard,et al.  Identification of the neural sources of the pattern-reversal VEP , 2005, NeuroImage.

[37]  D. J. Felleman,et al.  Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex , 1997, The Journal of comparative neurology.

[38]  Justin L. Gardner,et al.  Contrast Adaptation and Representation in Human Early Visual Cortex , 2005, Neuron.

[39]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[40]  Martin I. Sereno,et al.  Spatial maps in frontal and prefrontal cortex , 2006, NeuroImage.

[41]  A. M. Dale,et al.  Spatiotemporal Brain Imaging of Visual-Evoked Activity Using Interleaved EEG and fMRI Recordings , 2001, NeuroImage.

[42]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[43]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[44]  Norio Fujimaki,et al.  fMRI‐constrained MEG source imaging and consideration of fMRI invisible sources , 2005, Human brain mapping.

[45]  Thom Carney,et al.  Localizing Sites of Activation in Primary Visual Cortex Using Visual-Evoked Potentials and Functional Magnetic Resonance Imaging , 2006, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[46]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[47]  Y. Ejima,et al.  Wiener Filter-Magnetoencephalography of Visual Cortical Activity , 2004, Brain Topography.

[48]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[49]  J. Michael Fitzpatrick,et al.  A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities , 1992, IEEE Trans. Medical Imaging.

[50]  Stanley A. Klein,et al.  The folding fingerprint of visual cortex reveals the timing of human V1 and V2 , 2010, NeuroImage.

[51]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[52]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[53]  F. Zanow,et al.  Individually shaped volume conductor models of the head in EEG source localisation , 1995, Medical and Biological Engineering and Computing.

[54]  John W Belliveau,et al.  Monte Carlo simulation studies of EEG and MEG localization accuracy , 2002, Human brain mapping.

[55]  J. Pernier,et al.  Improved forward EEG calculations using local mesh refinement of realistic head geometries. , 1995, Electroencephalography and Clinical Neurophysiology.

[56]  Anders M. Dale,et al.  Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging , 2010, NeuroImage.

[57]  Roger B. H. Tootell,et al.  The advantage of combining MEG and EEG: Comparison to fMRI in focally stimulated visual cortex , 2007, NeuroImage.

[58]  C C Wood,et al.  Retinotopic organization of human visual cortex: departures from the classical model. , 1996, Cerebral cortex.

[59]  R. Ilmoniemi,et al.  Estimates of visually evoked cortical currents. , 1992, Electroencephalography and clinical neurophysiology.

[60]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[61]  A K Liu,et al.  Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[63]  Anders M. Dale,et al.  A hybrid approach to the Skull Stripping problem in MRI , 2001, NeuroImage.

[64]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[65]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  Lars Riecke,et al.  Parietal and superior frontal visuospatial maps activated by pointing and saccades , 2007, NeuroImage.

[67]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.