A High‐Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer

[1]  Marina Mastragostino,et al.  Conducting polymers as electrode materials in supercapacitors , 2002 .

[2]  A. Kasuya,et al.  Purification of MWNTs Combining Wet Grinding, Hydrothermal Treatment, and Oxidation , 2001 .

[3]  François Béguin,et al.  Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations , 2005 .

[4]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[5]  O. Inganäs,et al.  Conducting Polymer Hydrogels as 3D Electrodes: Applications for Supercapacitors , 1999 .

[6]  K. László,et al.  Comparative adsorption study on carbons from polymer precursors , 2000 .

[7]  Fu He,et al.  Study on the pyrolysis of wood-derived rayon fiber by thermogravimetry mass spectrometry , 2005 .

[8]  François Béguin,et al.  Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium , 2006 .

[9]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[10]  Hsisheng Teng,et al.  Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics , 2002 .

[11]  Cordt Zollfrank,et al.  Decomposition and carbonisation of wood biopolymers—a microstructural study of softwood pyrolysis , 2005 .

[12]  François Béguin,et al.  Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors , 2005 .

[13]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[14]  J. Dentzer,et al.  Carbon Gasification: The Active Site Concept , 1991 .

[15]  Jim P. Zheng,et al.  A New Charge Storage Mechanism for Electrochemical Capacitors , 1995 .

[16]  Chi-Chang Hu,et al.  Effects of electrolytes and electrochemical pretreatments on the capacitive characteristics of activated carbon fabrics for supercapacitors , 2004 .

[17]  Doron Aurbach,et al.  Carbon Electrodes for Double‐Layer Capacitors I. Relations Between Ion and Pore Dimensions , 2000 .

[18]  D. Lozano‐Castelló,et al.  Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte , 2003 .

[19]  S. Bonnamy,et al.  High yield of pure multiwalled carbon nanotubes from the catalytic decomposition of acetylene on in-situ formed cobalt nanoparticles. , 2002, Journal of nanoscience and nanotechnology.

[20]  Bjørn Larsen,et al.  13C-n.m.r. studies of monomeric composition and sequence in alginate , 1981 .

[21]  E. Frąckowiak,et al.  Effect of pore size distribution of coal-based activated carbons on double layer capacitance , 2005 .

[22]  J. A. Menéndez,et al.  On the nature of basic sites on carbon surfaces: an overview , 2004 .

[23]  H. Teng,et al.  Electrochemical responses from surface oxides present on HNO3-treated carbons , 2003 .

[24]  P. Bernier,et al.  Purification of catalytically produced multi-wall nanotubes , 1998 .

[25]  F. Béguin,et al.  Supercapacitors from nanotubes/polypyrrole composites , 2001 .

[26]  Rüdiger Kötz,et al.  Capacitance limits of high surface area activated carbons for double layer capacitors , 2005 .