Structure and Randomness in Combinatorics
暂无分享,去创建一个
[1] W. T. Gowers,et al. A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .
[2] Ben Green,et al. On the Littlewood Problem Modulo a Prime , 2009, Canadian Journal of Mathematics.
[3] A SZEMERI DI TYPE THEOREM FOR SETS OF POSITIVE DENSITY IN R k , 2022 .
[4] W. T. Gowers,et al. Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .
[5] Terence Tao. A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.
[6] Terence Tao,et al. Additive combinatorics , 2007, Cambridge studies in advanced mathematics.
[7] T. Tao,et al. The primes contain arbitrarily long polynomial progressions , 2006, math/0610050.
[8] Ben Green,et al. AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM , 2008, Proceedings of the Edinburgh Mathematical Society.
[10] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[11] Terence Tao,et al. A Correspondence Principle between (hyper)graph Theory and Probability Theory, and the (hyper)graph Removal Lemma , 2006 .
[12] Alan M. Frieze,et al. Quick Approximation to Matrices and Applications , 1999, Comb..
[13] Ben Green,et al. Montreal Lecture Notes on Quadratic Fourier Analysis , 2006 .
[14] B. Green. A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.
[15] Terence Tao,et al. The Gaussian primes contain arbitrarily shaped constellations , 2005 .
[16] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[17] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[18] Terence Tao. Szemerédi's regularity lemma revisited , 2006, Contributions Discret. Math..
[19] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[20] Manuel Blum,et al. Self-testing/correcting with applications to numerical problems , 1990, STOC '90.
[21] Noga Alon,et al. Testing Low-Degree Polynomials over GF(2( , 2003, RANDOM-APPROX.
[22] Terence Tao. A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2006, Electron. J. Comb..
[23] Noga Alon,et al. Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[24] Ben Green,et al. New bounds for Szemerédi's theorem, I: progressions of length 4 in finite field geometries , 2009 .
[25] T. Tao. The ergodic and combinatorial approaches to Szemerédi's theorem , 2006, math/0604456.
[26] Terence Tao,et al. The dichotomy between structure and randomness, arithmetic progressions, and the primes , 2005, math/0512114.
[27] RodlVojtech,et al. Regular Partitions of Hypergraphs , 2007 .
[28] W. T. Gowers,et al. Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.
[29] Terence Tao,et al. Norm convergence of multiple ergodic averages for commuting transformations , 2007, Ergodic Theory and Dynamical Systems.