Dendrimer‐Encapsulated Ruthenium Oxide Nanoparticles as Catalysts in Lithium‐Oxygen Batteries

Dendrimer‐encapsulated ruthenium oxide nanoparticles (DEN‐RuO2) have been used as catalysts in lithium‐oxygen (Li‐O2) batteries for the first time. The results obtained from ultraviolet‐visible spectroscopy, electron microscopy and X‐ray photoelectron spectroscopy show that the nanoparticles synthesized by the dendrimer template method are ruthenium oxide, not metallic ruthenium as reported by other groups. The DEN‐RuO2 significantly improves the cycling stability of Li‐O2 batteries with carbon electrodes and decreases the charging potential even at ten times less catalyst loading than those reported previously. The monodispersity, porosity, and large number of surface functionalities of the dendrimer template prevent the aggregation of the RuO2 nanoparticles, making their entire surface area available for catalysis. The potential of using DEN‐RuO2 as a standalone cathode material for Li‐O2 batteries is also explored.

[1]  Wu Xu,et al.  Stability of polymer binders in Li–O2 batteries , 2013 .

[2]  R. Meijboom,et al.  Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the Langmuir-Hinshelwood approach. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[3]  H. Byon,et al.  Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. , 2013, Nano letters.

[4]  Bing Sun,et al.  Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance , 2013, Scientific Reports.

[5]  H. Over,et al.  Room Temperature Oxidation of Ruthenium , 2013 .

[6]  Hun‐Gi Jung,et al.  Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. , 2013, ACS nano.

[7]  V. A. Apkarian,et al.  Raman scattering at plasmonic junctions shorted by conductive molecular bridges. , 2013, Nano letters.

[8]  P. Bhattacharya,et al.  Exploiting the physicochemical properties of dendritic polymers for environmental and biological applications. , 2013, Physical chemistry chemical physics : PCCP.

[9]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[10]  P. Novák,et al.  Critical aspects in the development of lithium–air batteries , 2013, Journal of Solid State Electrochemistry.

[11]  Stefan A Freunberger,et al.  The carbon electrode in nonaqueous Li-O2 cells. , 2013, Journal of the American Chemical Society.

[12]  Yang Shao-Horn,et al.  Chemical and Morphological Changes of Li–O2 Battery Electrodes upon Cycling , 2012 .

[13]  Yang Shao-Horn,et al.  Evidence of catalyzed oxidation of Li2O2 for rechargeable Li-air battery applications. , 2012, Physical chemistry chemical physics : PCCP.

[14]  Yuyan Shao,et al.  Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective , 2012 .

[15]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[16]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[17]  Emily V. Carino,et al.  Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications , 2011 .

[18]  J. Monnier,et al.  Preparation, characterization, and kinetic evaluation of dendrimer-derived bimetallic Pt–Ru/SiO2 catalysts , 2010 .

[19]  R. Tannenbaum,et al.  Sol–gel synthesis of hydrous ruthenium oxide nanonetworks from 1,2-epoxides , 2007 .

[20]  I. Odenbrand,et al.  Hydrogenation of benzene to cyclohexene on a ruthenium catalyst: Physical and chemical characterisation of the catalyst and its precursor , 2007 .

[21]  T. Fisher,et al.  Dendrimer-templated Fe nanoparticles for the growth of single-wall carbon nanotubes by plasma-enhanced CVD. , 2006, The journal of physical chemistry. B.

[22]  Attilio Siani,et al.  Particle size control in dendrimer-derived supported ruthenium catalysts. , 2006, The journal of physical chemistry. B.

[23]  R. Crooks,et al.  Size-selective catalytic activity of Pd nanoparticles encapsulated within end-group functionalized dendrimers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[24]  H. Ploehn,et al.  Thermal decomposition of generation-4 polyamidoamine dendrimer films: decomposition catalyzed by dendrimer-encapsulated Pt particles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[25]  R. Crooks,et al.  Electrocatalytic O2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles. , 2005, Journal of the American Chemical Society.

[26]  R. Dickson,et al.  Nanoparticle-free single molecule anti-stokes Raman spectroscopy. , 2005, Physical review letters.

[27]  Richard M Crooks,et al.  Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. , 2005, The journal of physical chemistry. B.

[28]  C. Williams,et al.  Synthesis and Microscopic Characterization of Dendrimer-Derived Ru/Al2O3 Catalysts , 2004 .

[29]  Chi-Chang Hu,et al.  Oxidative Synthesis of RuO x ⋅ n H 2 O with Ideal Capacitive Characteristics for Supercapacitors , 2004 .

[30]  R. Costo,et al.  Progress in the preparation of magnetic nanoparticles for applications in biomedicine , 2003, Magnetic Nanoparticles in Biosensing and Medicine.

[31]  M. El-Sayed,et al.  The Effect of Stabilizers on the Catalytic Activity and Stability of Pd Colloidal Nanoparticles in the Suzuki Reactions in Aqueous Solution , 2001 .

[32]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. , 2001, Accounts of chemical research.

[33]  R. Crooks,et al.  Heck Heterocoupling within a Dendritic Nanoreactor , 2001 .

[34]  P. Buseck,et al.  Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy , 1999 .

[35]  M. Genet,et al.  Surface reduction of ruthenium compounds with long exposure to an X-ray beam in photoelectron spectroscopy , 1999 .

[36]  R. Crooks,et al.  SELF-ASSEMBLED INVERTED MICELLES PREPARED FROM A DENDRIMER TEMPLATE : PHASE TRANSFER OF ENCAPSULATED GUESTS , 1999 .

[37]  R. Crooks,et al.  Dendrimer‐Encapsulated Pt Nanoparticles: Synthesis, Characterization, and Applications to Catalysis , 1999 .

[38]  Mingqi Zhao,et al.  Homogene katalytische Hydrierung mit monodispersen, dendrimerumhüllten Pd‐ und Pt‐Nanopartikeln , 1999 .

[39]  R. Crooks,et al.  Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles. , 1999, Angewandte Chemie.

[40]  D. Bergbreiter,et al.  Water-soluble polymer-bound, recoverable palladium(0)-phosphine catalysts , 1997 .

[41]  L. Lewis Chemical catalysis by colloids and clusters , 1993 .

[42]  G. Battaglin,et al.  Compositional and Microstructural Characterization of RuO2 ‐ TiO2 Catalysts Synthesized by the Sol‐Gel Method , 1992 .

[43]  C. Bianchi,et al.  An XPS study on ruthenium compounds and catalysts , 1991 .

[44]  D. Briggs,et al.  Practical surface analysis: By auger and x-ray photoelectron spectroscopy , 1983 .

[45]  K. Taylor Determination of ruthenium surface areas by hydrogen and oxygen chemisorption , 1975 .

[46]  Deford The Chemistry of Ruthenium , 1948 .