An Edge Detection Technique Using the Facet Model and Parameterized Relaxation Labeling

We present a method for detecting and labeling the edge structures in digital gray-scale images in two distinct stages: First, a variant of the cubic facet model is applied to detect the location, orientation and curvature of the putative edge points. Next, a relaxation labeling network is used to reinforce meaningful edge structures and suppress noisy edges. Each node label of this network is a 3D vector parameterizing the orientation and curvature information of the corresponding edge point. A hysteresis step in the relaxation process maximizes connected contours. For certain types of images, prefiltering by adaptive smoothing improves robustness against noise and spatial blurring.

[1]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Salvatore Tabbone,et al.  A multi-scale edge detector , 1993, Pattern Recognit..

[3]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Robert M. Haralick,et al.  Integrated Directional Derivative Gradient Operator , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  James S. Duncan,et al.  Reinforcement of Linear Structure using Parametrized Relaxation Labeling , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  J. Canny Finding Edges and Lines in Images , 1983 .

[8]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Josef Kittler,et al.  Multiresolution edge labelling using hierarchical relaxation , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[11]  Hong Jeong,et al.  Adaptive Determination of Filter Scales for Edge Detection , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  D Marr,et al.  Early processing of visual information. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[13]  Ellen C. Hildreth,et al.  Implementation Of A Theory Of Edge Detection , 1980 .

[14]  Ramesh C. Jain,et al.  Reasoning About Edges in Scale Space , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Gérard G. Medioni,et al.  Detection of Intensity Changes with Subpixel Accuracy Using Laplacian-Gaussian Masks , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Josef Kittler,et al.  Edge-Labeling Using Dictionary-Based Relaxation , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Josef Kittler,et al.  Optimal Edge Detectors for Ramp Edges , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Steven W. Zucker,et al.  The Organization Of Curve Detection: Coarse Tangent Fields And Fine Spline Coverings , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[22]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  Fredrik Bergholm,et al.  Edge Focusing , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.