CuGaO2: A Promising Inorganic Hole‐Transporting Material for Highly Efficient and Stable Perovskite Solar Cells

The p-type inorganic semiconductor CuGaO2 as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better-energy level matching, and superior stability, as well as low-temperature processing technique. Compared to organic HTL, a very competitive PCE of 18.51% with long-term stability is achieved. This indicates that CuGaO2 is a promising HTL for efficient and stable PSCs.

[1]  Liang Xu,et al.  Solution Synthesized p-Type Copper Gallium Oxide Nanoplates as Hole Transport Layer for Organic Photovoltaic Devices. , 2015, The journal of physical chemistry letters.

[2]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[3]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[4]  Satvasheel Powar,et al.  Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO2 nanoplates , 2014 .

[5]  M. Grätzel,et al.  A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells , 2015 .

[6]  X. Tan,et al.  Synthesis, microstructure, and electrical properties of the delafossite compound CuGaO2 , 2005 .

[7]  J. Robertson,et al.  Band structure calculations of CuAlO 2 , CuGaO 2 , CuInO 2 , and CuCrO 2 by screened exchange , 2011, 1101.3957.

[8]  Mingzhe Yu,et al.  p-Type Dye-Sensitized Solar Cells Based on Delafossite CuGaO2 Nanoplates with Saturation Photovoltages Exceeding 460 mV. , 2012, The journal of physical chemistry letters.

[9]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[10]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[11]  M. Hong,et al.  14.8% perovskite solar cells employing carbazole derivatives as hole transporting materials. , 2014, Chemical communications.

[12]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[13]  D. B. Rogers,et al.  Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds , 1971 .

[14]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[15]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[16]  Peng Gao,et al.  Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells , 2015 .

[17]  A. Jen,et al.  Facile Thiol‐Ene Thermal Crosslinking Reaction Facilitated Hole‐Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells , 2016 .

[18]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[19]  Min Han,et al.  Temperature dependent phonon evolutions and optical properties of highly c-axis oriented CuGaO2 semiconductor films grown by the sol-gel method , 2011 .

[20]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[21]  Y. Murata,et al.  Hole-Transporting Materials with a Two-Dimensionally Expanded π-System around an Azulene Core for Efficient Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[22]  Alan J. Heeger,et al.  Recombination in polymer-fullerene bulk heterojunction solar cells , 2010 .

[23]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[24]  Xudong Yang,et al.  A dopant-free hole-transporting material for efficient and stable perovskite solar cells , 2014 .

[25]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[26]  Yunlong Guo,et al.  Three-Dimensionally Homoconjugated Carbon-Bridged Oligophenylenevinylene for Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[27]  D. Norton,et al.  CuGaO2 thin film synthesis using hydrogen-assisted pulsed laser deposition , 2006 .

[28]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[29]  J. Durrant,et al.  One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells , 2016 .

[30]  D. Keszler,et al.  Synthesis of 3R-CuMO2+δ (M=Ga, Sc, In) , 2003 .

[31]  Huajun Chen,et al.  Perovskite Solar Cells Employing Dopant‐Free Organic Hole Transport Materials with Tunable Energy Levels , 2016, Advanced materials.

[32]  Mingzhe Yu,et al.  Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates. , 2014, Inorganic chemistry.

[33]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[34]  M. Grätzel,et al.  A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. , 2014, Angewandte Chemie.

[35]  S. Zakeeruddin,et al.  A Novel Dopant‐Free Triphenylamine Based Molecular “Butterfly” Hole‐Transport Material for Highly Efficient and Stable Perovskite Solar Cells , 2016 .

[36]  S. Zhang,et al.  Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides. , 2002, Physical review letters.

[37]  S. Zakeeruddin,et al.  Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells , 2014 .

[38]  P. Heremans,et al.  Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[39]  M. Boujtita,et al.  CuGaO2: a promising alternative for NiO in p-type dye solar cells , 2012 .

[40]  Jeroen van den Brink,et al.  The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3 , 2014, Nature Communications.

[41]  M. Grätzel,et al.  Thermal Behavior of Methylammonium Lead- trihalide Perovskite Photovoltaic Light Harvesters , 2014 .

[42]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[43]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[44]  P. Holloway,et al.  Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures , 2011 .

[45]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[46]  Mohammad Khaja Nazeeruddin,et al.  Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. , 2013, Journal of the American Chemical Society.

[47]  A. Jen,et al.  Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[48]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[49]  Y. Fu,et al.  New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport layer , 2016 .

[50]  Martijn Lenes,et al.  Origin of the dark-current ideality factor in polymer:fullerene bulk heterojunction solar cells , 2011 .

[51]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[52]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[53]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[54]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .