Composite Logconcave Sampling with a Restricted Gaussian Oracle

We consider sampling from composite densities on $\mathbb{R}^d$ of the form $d\pi(x) \propto \exp(-f(x) - g(x))dx$ for well-conditioned $f$ and convex (but possibly non-smooth) $g$, a family generalizing restrictions to a convex set, through the abstraction of a restricted Gaussian oracle. For $f$ with condition number $\kappa$, our algorithm runs in $O \left(\kappa^2 d \log^2\tfrac{\kappa d}{\epsilon}\right)$ iterations, each querying a gradient of $f$ and a restricted Gaussian oracle, to achieve total variation distance $\epsilon$. The restricted Gaussian oracle, which draws samples from a distribution whose negative log-likelihood sums a quadratic and $g$, has been previously studied and is a natural extension of the proximal oracle used in composite optimization. Our algorithm is conceptually simple and obtains stronger provable guarantees and greater generality than existing methods for composite sampling. We conduct experiments showing our algorithm vastly improves upon the hit-and-run algorithm for sampling the restriction of a (non-diagonal) Gaussian to the positive orthant.

[1]  Santosh S. Vempala,et al.  Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities , 2018, ArXiv.

[2]  László Lovász,et al.  Blocking Conductance and Mixing in Random Walks , 2006, Combinatorics, Probability and Computing.

[3]  Volkan Cevher,et al.  Mirrored Langevin Dynamics , 2018, NeurIPS.

[4]  Espen Bernton,et al.  Langevin Monte Carlo and JKO splitting , 2018, COLT.

[5]  A. Dalalyan Theoretical guarantees for approximate sampling from smooth and log‐concave densities , 2014, 1412.7392.

[6]  Martin J. Wainwright,et al.  Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients , 2019, J. Mach. Learn. Res..

[7]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[8]  Martin J. Wainwright,et al.  Log-concave sampling: Metropolis-Hastings algorithms are fast! , 2018, COLT.

[9]  Santosh S. Vempala,et al.  Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions , 2019, APPROX-RANDOM.

[10]  Yin Tat Lee,et al.  The Randomized Midpoint Method for Log-Concave Sampling , 2019, NeurIPS.

[11]  Eric Moulines,et al.  Sampling from a log-concave distribution with compact support with proximal Langevin Monte Carlo , 2017, COLT.

[12]  Santosh S. Vempala,et al.  Solving convex programs by random walks , 2004, JACM.

[13]  Martin J. Wainwright,et al.  High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm , 2019, J. Mach. Learn. Res..

[14]  Martin J. Wainwright,et al.  An Efficient Sampling Algorithm for Non-smooth Composite Potentials , 2019, J. Mach. Learn. Res..

[15]  Marcelo Pereyra,et al.  Proximal Markov chain Monte Carlo algorithms , 2013, Statistics and Computing.

[16]  Alain Durmus,et al.  Analysis of Langevin Monte Carlo via Convex Optimization , 2018, J. Mach. Learn. Res..

[17]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[18]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[19]  Santosh S. Vempala,et al.  Fast Algorithms for Logconcave Functions: Sampling, Rounding, Integration and Optimization , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[20]  P. Tetali,et al.  Mixing Time Bounds via the Spectral Profile , 2005, math/0505690.

[21]  Yin Tat Lee,et al.  Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo , 2020, COLT.

[22]  Tong Zhang,et al.  Accelerating Stochastic Gradient Descent using Predictive Variance Reduction , 2013, NIPS.

[23]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[24]  Santosh S. Vempala,et al.  Hit-and-run from a corner , 2004, STOC '04.

[25]  Matthew Thompson,et al.  Application of Bayesian inference for reconstruction of FRC plasma state in C-2W , 2018 .

[26]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[27]  Huapu Lu Amsterdam, The Netherlands , 2020 .

[28]  Michael I. Jordan,et al.  Underdamped Langevin MCMC: A non-asymptotic analysis , 2017, COLT.

[29]  Arnak S. Dalalyan,et al.  On sampling from a log-concave density using kinetic Langevin diffusions , 2018, Bernoulli.

[30]  László Lovász,et al.  Faster mixing via average conductance , 1999, STOC '99.

[31]  Sébastien Bubeck,et al.  Sampling from a Log-Concave Distribution with Projected Langevin Monte Carlo , 2015, Discrete & Computational Geometry.

[32]  Andre Wibisono,et al.  Proximal Langevin Algorithm: Rapid Convergence Under Isoperimetry , 2019, ArXiv.