Negative linear compressibility in a crystal of α-BiB3O6

Negative linear compressibility (NLC), a rare and important mechanical effect with many application potentials, in a crystal of α-BiB3O6 (BIBO) is comprehensively investigated using first-principles calculations and high-pressure synchrotron X-ray diffraction experiments. The results indicate that the BIBO crystal exhibits the second largest NLC among all known inorganic materials over a broad pressure range. This unusual NLC behaviour is due to the rotation and displacement of the rigid [BO3] and [BO4] building units that result in hinge motion in an umbrella-like topology. More importantly, the parallel-polar lone-pair electrons on the Bi3+ cations act as “umbrella stands” to withstand the B-O hinges, thus significantly enhancing the NLC effect. BIBO presents a unique example of a “collapsible umbrella” mechanism for achieving NLC, which could be applied to other framework materials with lone-pair electrons.

[1]  Zachary G. Nicolaou,et al.  Mechanical metamaterials with negative compressibility transitions. , 2012, Nature materials.

[2]  Robert M. Hazen,et al.  High-pressure behavior of LaNbO4 , 1985 .

[3]  R. Fröhlich,et al.  Die Kristallstruktur von Wismutborat, BiB3O6 , 1984 .

[4]  Larry R. Dalton,et al.  Pneumatic carbon nanotube actuators , 2002 .

[5]  Kevin S. Knight,et al.  Negative Linear Compressibility and Massive Anisotropic Thermal Expansion in Methanol Monohydrate , 2011, Science.

[6]  S. Haussühl,et al.  Piezoelectric and elastic properties of the nonlinear optical material bismuth triborate, BiB3O6 , 2006 .

[7]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[8]  Baughman,et al.  Materials with negative compressibilities in one or more dimensions , 1998, Science.

[9]  J. Tse,et al.  Collapsing cristobalitelike structures in silica analogues at high pressure. , 2003, Physical review letters.

[10]  Xiufeng Cheng,et al.  Anisotropic thermal expansion of BiB3O6 , 2002 .

[11]  Y. Gartstein,et al.  Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles , 2009, Science.

[12]  Lars Peters,et al.  Giant negative linear compressibility in zinc dicyanoaurate. , 2013, Nature materials.

[13]  Matthew G. Tucker,et al.  Rational design of materials with extreme negative compressibility: selective soft-mode frustration in KMn[Ag(CN)2]3. , 2012, Journal of the American Chemical Society.

[14]  Matthew G. Tucker,et al.  Large negative linear compressibility of Ag3[Co(CN)6] , 2008, Proceedings of the National Academy of Sciences.

[15]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[16]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[17]  Siyang Luo,et al.  First-principles materials applications and design of nonlinear optical crystals , 2014 .

[18]  Joseph N. Grima,et al.  Mechanical metamaterials: Materials that push back. , 2012, Nature materials.

[19]  David Cyranoski,et al.  Materials science: China's crystal cache , 2009, Nature.

[20]  Wei Li,et al.  Negative linear compressibility of a metal-organic framework. , 2012, Journal of the American Chemical Society.

[21]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[22]  Xiufeng Cheng,et al.  Crystal growth, thermal and optical performance of BiB3O6 , 2001 .

[23]  Petra Becker,et al.  Borate Materials in Nonlinear Optics , 1998 .

[24]  Heine,et al.  Optimized and transferable nonlocal separable ab initio pseudopotentials. , 1993, Physical review. B, Condensed matter.

[25]  Graeme Ackland,et al.  Elastic instabilities in crystals from ab initio stress - strain relations , 1997 .

[26]  Andrew L. Goodwin,et al.  PASCal: a principal axis strain calculator for thermal expansion and compressibility determination , 2012, 1204.3007.

[27]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[28]  Ning Ye,et al.  Computer-Assisted Search for Nonlinear Optical Crystals , 1999 .

[29]  R. E. Schmunk,et al.  Compressibility of Hexagonal Selenium by X‐Ray and Neutron Diffraction , 1972 .

[30]  Bernd G. Pfrommer,et al.  Relaxation of Crystals with the Quasi-Newton Method , 1997 .